![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iineq1 | Structured version Visualization version GIF version |
Description: Equality theorem for indexed intersection. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iineq1 | ⊢ (𝐴 = 𝐵 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3318 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
2 | 1 | abbidv 2797 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶}) |
3 | df-iin 4994 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
4 | df-iin 4994 | . 2 ⊢ ∩ 𝑥 ∈ 𝐵 𝐶 = {𝑦 ∣ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝐶} | |
5 | 2, 3, 4 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {cab 2705 ∀wral 3057 ∩ ciin 4992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-ral 3058 df-rex 3067 df-iin 4994 |
This theorem is referenced by: iinrab2 5067 iinvdif 5077 riin0 5079 iin0 5356 xpriindi 5833 cmpfi 23305 ptbasfi 23478 fclsval 23905 taylfval 26286 polvalN 39372 iineq1d 44450 |
Copyright terms: Public domain | W3C validator |