![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 5005 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
2 | iunss1 5005 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
3 | 1, 2 | anim12i 612 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
4 | eqss 3993 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3993 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ⊆ wss 3944 ∪ ciun 4991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rex 3066 df-v 3471 df-in 3951 df-ss 3961 df-iun 4993 |
This theorem is referenced by: iuneq1d 5018 iinvdif 5077 iunxprg 5093 iununi 5096 iunsuc 6448 funopsn 7151 funiunfv 7252 onfununi 8355 iunfi 9356 ttrclselem1 9740 ttrclselem2 9741 rankuni2b 9868 pwsdompw 10219 ackbij1lem7 10241 r1om 10259 fictb 10260 cfsmolem 10285 ituniiun 10437 domtriomlem 10457 domtriom 10458 inar1 10790 fsum2d 15741 fsumiun 15791 ackbijnn 15798 fprod2d 15949 prmreclem5 16880 lpival 21203 fiuncmp 23295 ovolfiniun 25417 ovoliunnul 25423 finiunmbl 25460 volfiniun 25463 voliunlem1 25466 iuninc 32336 ofpreima2 32435 gsumpart 32747 esum2dlem 33647 sigaclfu2 33676 sigapildsyslem 33716 fiunelros 33729 bnj548 34464 bnj554 34466 bnj594 34479 neibastop2lem 35780 istotbnd3 37179 0totbnd 37181 sstotbnd2 37182 sstotbnd 37183 sstotbnd3 37184 totbndbnd 37197 prdstotbnd 37202 cntotbnd 37204 heibor 37229 dfrcl4 43029 iunrelexp0 43055 comptiunov2i 43059 corclrcl 43060 cotrcltrcl 43078 trclfvdecomr 43081 dfrtrcl4 43091 corcltrcl 43092 cotrclrcl 43095 fiiuncl 44352 iuneq1i 44374 sge0iunmptlemfi 45724 caragenfiiuncl 45826 carageniuncllem1 45832 ovnsubadd2lem 45956 |
Copyright terms: Public domain | W3C validator |