Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trclrelexplem Structured version   Visualization version   GIF version

Theorem trclrelexplem 43132
Description: The union of relational powers to positive multiples of 𝑁 is a subset to the transitive closure raised to the power of 𝑁. (Contributed by RP, 15-Jun-2020.)
Assertion
Ref Expression
trclrelexplem (𝑁 ∈ ℕ → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁))
Distinct variable groups:   𝐷,𝑗   𝐷,𝑘   𝑘,𝑁
Allowed substitution hint:   𝑁(𝑗)

Proof of Theorem trclrelexplem
Dummy variables 𝑥 𝑦 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7423 . . . 4 (𝑥 = 1 → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟1))
21iuneq2d 5021 . . 3 (𝑥 = 1 → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1))
3 oveq2 7423 . . 3 (𝑥 = 1 → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1))
42, 3sseq12d 4012 . 2 (𝑥 = 1 → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1)))
5 oveq2 7423 . . . 4 (𝑥 = 𝑦 → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟𝑦))
65iuneq2d 5021 . . 3 (𝑥 = 𝑦 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦))
7 oveq2 7423 . . 3 (𝑥 = 𝑦 → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦))
86, 7sseq12d 4012 . 2 (𝑥 = 𝑦 → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)))
9 oveq2 7423 . . . 4 (𝑥 = (𝑦 + 1) → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)))
109iuneq2d 5021 . . 3 (𝑥 = (𝑦 + 1) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)))
11 oveq2 7423 . . 3 (𝑥 = (𝑦 + 1) → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)))
1210, 11sseq12d 4012 . 2 (𝑥 = (𝑦 + 1) → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1))))
13 oveq2 7423 . . . 4 (𝑥 = 𝑁 → ((𝐷𝑟𝑘)↑𝑟𝑥) = ((𝐷𝑟𝑘)↑𝑟𝑁))
1413iuneq2d 5021 . . 3 (𝑥 = 𝑁 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) = 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁))
15 oveq2 7423 . . 3 (𝑥 = 𝑁 → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁))
1614, 15sseq12d 4012 . 2 (𝑥 = 𝑁 → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑥) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑥) ↔ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁)))
17 oveq2 7423 . . . . . 6 (𝑘 = 𝑙 → (𝐷𝑟𝑘) = (𝐷𝑟𝑙))
1817cbviunv 5038 . . . . 5 𝑘 ∈ ℕ (𝐷𝑟𝑘) = 𝑙 ∈ ℕ (𝐷𝑟𝑙)
19 oveq2 7423 . . . . . 6 (𝑙 = 𝑗 → (𝐷𝑟𝑙) = (𝐷𝑟𝑗))
2019cbviunv 5038 . . . . 5 𝑙 ∈ ℕ (𝐷𝑟𝑙) = 𝑗 ∈ ℕ (𝐷𝑟𝑗)
2118, 20eqtri 2756 . . . 4 𝑘 ∈ ℕ (𝐷𝑟𝑘) = 𝑗 ∈ ℕ (𝐷𝑟𝑗)
22 ovex 7448 . . . . . 6 (𝐷𝑟𝑘) ∈ V
23 relexp1g 15000 . . . . . 6 ((𝐷𝑟𝑘) ∈ V → ((𝐷𝑟𝑘)↑𝑟1) = (𝐷𝑟𝑘))
2422, 23mp1i 13 . . . . 5 (𝑘 ∈ ℕ → ((𝐷𝑟𝑘)↑𝑟1) = (𝐷𝑟𝑘))
2524iuneq2i 5013 . . . 4 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) = 𝑘 ∈ ℕ (𝐷𝑟𝑘)
26 nnex 12243 . . . . . 6 ℕ ∈ V
27 ovex 7448 . . . . . 6 (𝐷𝑟𝑗) ∈ V
2826, 27iunex 7967 . . . . 5 𝑗 ∈ ℕ (𝐷𝑟𝑗) ∈ V
29 relexp1g 15000 . . . . 5 ( 𝑗 ∈ ℕ (𝐷𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝐷𝑟𝑗))
3028, 29ax-mp 5 . . . 4 ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝐷𝑟𝑗)
3121, 25, 303eqtr4i 2766 . . 3 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) = ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1)
3231eqimssi 4039 . 2 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟1) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟1)
33 oveq2 7423 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝐷𝑟𝑘) = (𝐷𝑟𝑚))
3433oveq1d 7430 . . . . . . . . 9 (𝑘 = 𝑚 → ((𝐷𝑟𝑘)↑𝑟𝑦) = ((𝐷𝑟𝑚)↑𝑟𝑦))
3534, 33coeq12d 5862 . . . . . . . 8 (𝑘 = 𝑚 → (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) = (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
3635cbviunv 5038 . . . . . . 7 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) = 𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
37 ss2iun 5010 . . . . . . . 8 (∀𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) → 𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
3834ssiun2s 5046 . . . . . . . . 9 (𝑚 ∈ ℕ → ((𝐷𝑟𝑚)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦))
39 coss1 5853 . . . . . . . . 9 (((𝐷𝑟𝑚)↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) → (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4038, 39syl 17 . . . . . . . 8 (𝑚 ∈ ℕ → (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4137, 40mprg 3063 . . . . . . 7 𝑚 ∈ ℕ (((𝐷𝑟𝑚)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
4236, 41eqsstri 4013 . . . . . 6 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) ⊆ 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
43 coss1 5853 . . . . . . . 8 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4443ralrimivw 3146 . . . . . . 7 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → ∀𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
45 ss2iun 5010 . . . . . . 7 (∀𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) → 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4644, 45syl 17 . . . . . 6 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → 𝑚 ∈ ℕ ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4742, 46sstrid 3990 . . . . 5 ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
4847adantl 481 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)) ⊆ 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
49 relexpsucnnr 14999 . . . . . . 7 (((𝐷𝑟𝑘) ∈ V ∧ 𝑦 ∈ ℕ) → ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
5022, 49mpan 689 . . . . . 6 (𝑦 ∈ ℕ → ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
5150iuneq2d 5021 . . . . 5 (𝑦 ∈ ℕ → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
5251adantr 480 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) = 𝑘 ∈ ℕ (((𝐷𝑟𝑘)↑𝑟𝑦) ∘ (𝐷𝑟𝑘)))
53 relexpsucnnr 14999 . . . . . . 7 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗) ∈ V ∧ 𝑦 ∈ ℕ) → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)))
5428, 53mpan 689 . . . . . 6 (𝑦 ∈ ℕ → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)))
55 oveq2 7423 . . . . . . . . 9 (𝑗 = 𝑚 → (𝐷𝑟𝑗) = (𝐷𝑟𝑚))
5655cbviunv 5038 . . . . . . . 8 𝑗 ∈ ℕ (𝐷𝑟𝑗) = 𝑚 ∈ ℕ (𝐷𝑟𝑚)
5756coeq2i 5858 . . . . . . 7 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)) = (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑚 ∈ ℕ (𝐷𝑟𝑚))
58 coiun 6255 . . . . . . 7 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑚 ∈ ℕ (𝐷𝑟𝑚)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
5957, 58eqtri 2756 . . . . . 6 (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ 𝑗 ∈ ℕ (𝐷𝑟𝑗)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚))
6054, 59eqtrdi 2784 . . . . 5 (𝑦 ∈ ℕ → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
6160adantr 480 . . . 4 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)) = 𝑚 ∈ ℕ (( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) ∘ (𝐷𝑟𝑚)))
6248, 52, 613sstr4d 4026 . . 3 ((𝑦 ∈ ℕ ∧ 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦)) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1)))
6362ex 412 . 2 (𝑦 ∈ ℕ → ( 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑦) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑦) → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟(𝑦 + 1)) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟(𝑦 + 1))))
644, 8, 12, 16, 32, 63nnind 12255 1 (𝑁 ∈ ℕ → 𝑘 ∈ ℕ ((𝐷𝑟𝑘)↑𝑟𝑁) ⊆ ( 𝑗 ∈ ℕ (𝐷𝑟𝑗)↑𝑟𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057  Vcvv 3470  wss 3945   ciun 4992  ccom 5677  (class class class)co 7415  1c1 11134   + caddc 11136  cn 12237  𝑟crelexp 14993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-n0 12498  df-z 12584  df-uz 12848  df-seq 13994  df-relexp 14994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator