![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negeqi | Structured version Visualization version GIF version |
Description: Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
negeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
negeqi | ⊢ -𝐴 = -𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | negeq 11474 | . 2 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝐴 = -𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 -cneg 11467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 df-neg 11469 |
This theorem is referenced by: negsubdii 11567 recgt0ii 12142 m1expcl2 14074 crreczi 14214 absi 15257 geo2sum2 15844 bpoly2 16025 bpoly3 16026 sinhval 16122 coshval 16123 cos2bnd 16156 divalglem2 16363 m1expaddsub 19444 cnmsgnsubg 21496 psgninv 21501 ncvspi 25071 cphipval2 25156 ditg0 25769 cbvditg 25770 ang180lem2 26729 ang180lem3 26730 ang180lem4 26731 1cubrlem 26760 dcubic2 26763 atandm2 26796 efiasin 26807 asinsinlem 26810 asinsin 26811 asin1 26813 reasinsin 26815 atancj 26829 atantayl2 26857 ppiub 27124 lgseisenlem1 27295 lgseisenlem2 27296 lgsquadlem1 27300 ostth3 27558 nvpi 30464 ipidsq 30507 ipasslem10 30636 normlem1 30907 polid2i 30954 lnophmlem2 31814 archirngz 32875 xrge0iif1 33475 ballotlem2 34044 itg2addnclem3 37081 dvasin 37112 areacirc 37121 lhe4.4ex1a 43689 itgsin0pilem1 45261 stoweidlem26 45337 dirkertrigeqlem3 45411 fourierdlem103 45520 sqwvfourb 45540 fourierswlem 45541 proththd 46877 |
Copyright terms: Public domain | W3C validator |