![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > probdsb | Structured version Visualization version GIF version |
Description: The probability of the complement of a set. That is, the probability that the event 𝐴 does not occur. (Contributed by Thierry Arnoux, 15-Dec-2016.) |
Ref | Expression |
---|---|
probdsb | ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘(∪ dom 𝑃 ∖ 𝐴)) = (1 − (𝑃‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → 𝑃 ∈ Prob) | |
2 | 1 | unveldomd 34030 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → ∪ dom 𝑃 ∈ dom 𝑃) |
3 | simpr 484 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → 𝐴 ∈ dom 𝑃) | |
4 | probdif 34035 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ ∪ dom 𝑃 ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘(∪ dom 𝑃 ∖ 𝐴)) = ((𝑃‘∪ dom 𝑃) − (𝑃‘(∪ dom 𝑃 ∩ 𝐴)))) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘(∪ dom 𝑃 ∖ 𝐴)) = ((𝑃‘∪ dom 𝑃) − (𝑃‘(∪ dom 𝑃 ∩ 𝐴)))) |
6 | probtot 34027 | . . 3 ⊢ (𝑃 ∈ Prob → (𝑃‘∪ dom 𝑃) = 1) | |
7 | elssuni 4936 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑃 → 𝐴 ⊆ ∪ dom 𝑃) | |
8 | sseqin2 4212 | . . . . 5 ⊢ (𝐴 ⊆ ∪ dom 𝑃 ↔ (∪ dom 𝑃 ∩ 𝐴) = 𝐴) | |
9 | 7, 8 | sylib 217 | . . . 4 ⊢ (𝐴 ∈ dom 𝑃 → (∪ dom 𝑃 ∩ 𝐴) = 𝐴) |
10 | 9 | fveq2d 6896 | . . 3 ⊢ (𝐴 ∈ dom 𝑃 → (𝑃‘(∪ dom 𝑃 ∩ 𝐴)) = (𝑃‘𝐴)) |
11 | 6, 10 | oveqan12d 7434 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → ((𝑃‘∪ dom 𝑃) − (𝑃‘(∪ dom 𝑃 ∩ 𝐴))) = (1 − (𝑃‘𝐴))) |
12 | 5, 11 | eqtrd 2768 | 1 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘(∪ dom 𝑃 ∖ 𝐴)) = (1 − (𝑃‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∖ cdif 3942 ∩ cin 3944 ⊆ wss 3945 ∪ cuni 4904 dom cdm 5673 ‘cfv 6543 (class class class)co 7415 1c1 11134 − cmin 11469 Probcprb 34022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-ac2 10481 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 ax-addf 11212 ax-mulf 11213 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-disj 5109 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-2o 8482 df-er 8719 df-map 8841 df-pm 8842 df-ixp 8911 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-fi 9429 df-sup 9460 df-inf 9461 df-oi 9528 df-dju 9919 df-card 9957 df-acn 9960 df-ac 10134 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-q 12958 df-rp 13002 df-xneg 13119 df-xadd 13120 df-xmul 13121 df-ioo 13355 df-ioc 13356 df-ico 13357 df-icc 13358 df-fz 13512 df-fzo 13655 df-fl 13784 df-mod 13862 df-seq 13994 df-exp 14054 df-fac 14260 df-bc 14289 df-hash 14317 df-shft 15041 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-limsup 15442 df-clim 15459 df-rlim 15460 df-sum 15660 df-ef 16038 df-sin 16040 df-cos 16041 df-pi 16043 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17398 df-topn 17399 df-0g 17417 df-gsum 17418 df-topgen 17419 df-pt 17420 df-prds 17423 df-ordt 17477 df-xrs 17478 df-qtop 17483 df-imas 17484 df-xps 17486 df-mre 17560 df-mrc 17561 df-acs 17563 df-ps 18552 df-tsr 18553 df-plusf 18593 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-submnd 18735 df-grp 18887 df-minusg 18888 df-sbg 18889 df-mulg 19018 df-subg 19072 df-cntz 19262 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-cring 20170 df-subrng 20477 df-subrg 20502 df-abv 20691 df-lmod 20739 df-scaf 20740 df-sra 21052 df-rgmod 21053 df-psmet 21265 df-xmet 21266 df-met 21267 df-bl 21268 df-mopn 21269 df-fbas 21270 df-fg 21271 df-cnfld 21274 df-top 22790 df-topon 22807 df-topsp 22829 df-bases 22843 df-cld 22917 df-ntr 22918 df-cls 22919 df-nei 22996 df-lp 23034 df-perf 23035 df-cn 23125 df-cnp 23126 df-haus 23213 df-tx 23460 df-hmeo 23653 df-fil 23744 df-fm 23836 df-flim 23837 df-flf 23838 df-tmd 23970 df-tgp 23971 df-tsms 24025 df-trg 24058 df-xms 24220 df-ms 24221 df-tms 24222 df-nm 24485 df-ngp 24486 df-nrg 24488 df-nlm 24489 df-ii 24791 df-cncf 24792 df-limc 25789 df-dv 25790 df-log 26484 df-esum 33642 df-siga 33723 df-meas 33810 df-prob 34023 |
This theorem is referenced by: coinflippvt 34099 |
Copyright terms: Public domain | W3C validator |