![]() |
Metamath
Proof Explorer Theorem List (p. 341 of 483) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30721) |
![]() (30722-32244) |
![]() (32245-48210) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | sseqmw 34001 | Lemma for sseqf 34002 amd sseqp1 34005. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑊) | ||
Theorem | sseqf 34002 | A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019.) (Proof shortened by AV, 7-Mar-2022.) |
⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) ⇒ ⊢ (𝜑 → (𝑀seqstr𝐹):ℕ0⟶𝑆) | ||
Theorem | sseqfres 34003 | The first elements in the strong recursive sequence are the sequence initializer. (Contributed by Thierry Arnoux, 23-Apr-2019.) |
⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) ⇒ ⊢ (𝜑 → ((𝑀seqstr𝐹) ↾ (0..^(♯‘𝑀))) = 𝑀) | ||
Theorem | sseqfv2 34004* | Value of the strong sequence builder function. (Contributed by Thierry Arnoux, 21-Apr-2019.) |
⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(♯‘𝑀))) ⇒ ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (lastS‘(seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0 × {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}))‘𝑁))) | ||
Theorem | sseqp1 34005 | Value of the strong sequence builder function at a successor. (Contributed by Thierry Arnoux, 24-Apr-2019.) |
⊢ (𝜑 → 𝑆 ∈ V) & ⊢ (𝜑 → 𝑀 ∈ Word 𝑆) & ⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “ (ℤ≥‘(♯‘𝑀)))) & ⊢ (𝜑 → 𝐹:𝑊⟶𝑆) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(♯‘𝑀))) ⇒ ⊢ (𝜑 → ((𝑀seqstr𝐹)‘𝑁) = (𝐹‘((𝑀seqstr𝐹) ↾ (0..^𝑁)))) | ||
Syntax | cfib 34006 | The Fibonacci sequence. |
class Fibci | ||
Definition | df-fib 34007 | Define the Fibonacci sequence, where that each element is the sum of the two preceding ones, starting from 0 and 1. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
⊢ Fibci = (〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) | ||
Theorem | fiblem 34008 | Lemma for fib0 34009, fib1 34010 and fibp1 34011. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
⊢ (𝑤 ∈ (Word ℕ0 ∩ (◡♯ “ (ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))):(Word ℕ0 ∩ (◡♯ “ (ℤ≥‘(♯‘〈“01”〉))))⟶ℕ0 | ||
Theorem | fib0 34009 | Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
⊢ (Fibci‘0) = 0 | ||
Theorem | fib1 34010 | Value of the Fibonacci sequence at index 1. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
⊢ (Fibci‘1) = 1 | ||
Theorem | fibp1 34011 | Value of the Fibonacci sequence at higher indices. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
⊢ (𝑁 ∈ ℕ → (Fibci‘(𝑁 + 1)) = ((Fibci‘(𝑁 − 1)) + (Fibci‘𝑁))) | ||
Theorem | fib2 34012 | Value of the Fibonacci sequence at index 2. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
⊢ (Fibci‘2) = 1 | ||
Theorem | fib3 34013 | Value of the Fibonacci sequence at index 3. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
⊢ (Fibci‘3) = 2 | ||
Theorem | fib4 34014 | Value of the Fibonacci sequence at index 4. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
⊢ (Fibci‘4) = 3 | ||
Theorem | fib5 34015 | Value of the Fibonacci sequence at index 5. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
⊢ (Fibci‘5) = 5 | ||
Theorem | fib6 34016 | Value of the Fibonacci sequence at index 6. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
⊢ (Fibci‘6) = 8 | ||
Syntax | cprb 34017 | Extend class notation to include the class of probability measures. |
class Prob | ||
Definition | df-prob 34018 | Define the class of probability measures as the set of measures with total measure 1. (Contributed by Thierry Arnoux, 14-Sep-2016.) |
⊢ Prob = {𝑝 ∈ ∪ ran measures ∣ (𝑝‘∪ dom 𝑝) = 1} | ||
Theorem | elprob 34019 | The property of being a probability measure. (Contributed by Thierry Arnoux, 8-Dec-2016.) |
⊢ (𝑃 ∈ Prob ↔ (𝑃 ∈ ∪ ran measures ∧ (𝑃‘∪ dom 𝑃) = 1)) | ||
Theorem | domprobmeas 34020 | A probability measure is a measure on its domain. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) | ||
Theorem | domprobsiga 34021 | The domain of a probability measure is a sigma-algebra. (Contributed by Thierry Arnoux, 23-Dec-2016.) |
⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | ||
Theorem | probtot 34022 | The probability of the universe set is 1. Second axiom of Kolmogorov. (Contributed by Thierry Arnoux, 8-Dec-2016.) |
⊢ (𝑃 ∈ Prob → (𝑃‘∪ dom 𝑃) = 1) | ||
Theorem | prob01 34023 | A probability is an element of [ 0 , 1 ]. First axiom of Kolmogorov. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ∈ (0[,]1)) | ||
Theorem | probnul 34024 | The probability of the empty event set is 0. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ (𝑃 ∈ Prob → (𝑃‘∅) = 0) | ||
Theorem | unveldomd 34025 | The universe is an element of the domain of the probability, the universe (entire probability space) being ∪ dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) | ||
Theorem | unveldom 34026 | The universe is an element of the domain of the probability, the universe (entire probability space) being ∪ dom 𝑃 in our construction. (Contributed by Thierry Arnoux, 22-Jan-2017.) |
⊢ (𝑃 ∈ Prob → ∪ dom 𝑃 ∈ dom 𝑃) | ||
Theorem | nuleldmp 34027 | The empty set is an element of the domain of the probability. (Contributed by Thierry Arnoux, 22-Jan-2017.) |
⊢ (𝑃 ∈ Prob → ∅ ∈ dom 𝑃) | ||
Theorem | probcun 34028* | The probability of the union of a countable disjoint set of events is the sum of their probabilities. (Third axiom of Kolmogorov) Here, the Σ construct cannot be used as it can handle infinite indexing set only if they are subsets of ℤ, which is not the case here. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ 𝒫 dom 𝑃 ∧ (𝐴 ≼ ω ∧ Disj 𝑥 ∈ 𝐴 𝑥)) → (𝑃‘∪ 𝐴) = Σ*𝑥 ∈ 𝐴(𝑃‘𝑥)) | ||
Theorem | probun 34029 | The probability of the union two incompatible events is the sum of their probabilities. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → ((𝐴 ∩ 𝐵) = ∅ → (𝑃‘(𝐴 ∪ 𝐵)) = ((𝑃‘𝐴) + (𝑃‘𝐵)))) | ||
Theorem | probdif 34030 | The probability of the difference of two event sets. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → (𝑃‘(𝐴 ∖ 𝐵)) = ((𝑃‘𝐴) − (𝑃‘(𝐴 ∩ 𝐵)))) | ||
Theorem | probinc 34031 | A probability law is increasing with regard to event set inclusion. (Contributed by Thierry Arnoux, 10-Feb-2017.) |
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ 𝐴 ⊆ 𝐵) → (𝑃‘𝐴) ≤ (𝑃‘𝐵)) | ||
Theorem | probdsb 34032 | The probability of the complement of a set. That is, the probability that the event 𝐴 does not occur. (Contributed by Thierry Arnoux, 15-Dec-2016.) |
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘(∪ dom 𝑃 ∖ 𝐴)) = (1 − (𝑃‘𝐴))) | ||
Theorem | probmeasd 34033 | A probability measure is a measure. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → 𝑃 ∈ ∪ ran measures) | ||
Theorem | probvalrnd 34034 | The value of a probability is a real number. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑃) ⇒ ⊢ (𝜑 → (𝑃‘𝐴) ∈ ℝ) | ||
Theorem | probtotrnd 34035 | The probability of the universe set is finite. (Contributed by Thierry Arnoux, 2-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → (𝑃‘∪ dom 𝑃) ∈ ℝ) | ||
Theorem | totprobd 34036* | Law of total probability, deduction form. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑃) & ⊢ (𝜑 → 𝐵 ∈ 𝒫 dom 𝑃) & ⊢ (𝜑 → ∪ 𝐵 = ∪ dom 𝑃) & ⊢ (𝜑 → 𝐵 ≼ ω) & ⊢ (𝜑 → Disj 𝑏 ∈ 𝐵 𝑏) ⇒ ⊢ (𝜑 → (𝑃‘𝐴) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) | ||
Theorem | totprob 34037* | Law of total probability. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (∪ 𝐵 = ∪ dom 𝑃 ∧ 𝐵 ∈ 𝒫 dom 𝑃 ∧ (𝐵 ≼ ω ∧ Disj 𝑏 ∈ 𝐵 𝑏))) → (𝑃‘𝐴) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) | ||
Theorem | probfinmeasb 34038 | Build a probability measure from a finite measure. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑀 ∘f/c /𝑒 (𝑀‘∪ 𝑆)) ∈ Prob) | ||
Theorem | probfinmeasbALTV 34039* | Alternate version of probfinmeasb 34038. (Contributed by Thierry Arnoux, 17-Dec-2016.) (New usage is discouraged.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑀‘∪ 𝑆) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 (𝑀‘∪ 𝑆))) ∈ Prob) | ||
Theorem | probmeasb 34040* | Build a probability from a measure and a set with finite measure. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆 ∧ (𝑀‘𝐴) ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘(𝑥 ∩ 𝐴)) / (𝑀‘𝐴))) ∈ Prob) | ||
Syntax | ccprob 34041 | Extends class notation with the conditional probability builder. |
class cprob | ||
Definition | df-cndprob 34042* | Define the conditional probability. (Contributed by Thierry Arnoux, 14-Sep-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
⊢ cprob = (𝑝 ∈ Prob ↦ (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏)))) | ||
Theorem | cndprobval 34043 | The value of the conditional probability , i.e. the probability for the event 𝐴, given 𝐵, under the probability law 𝑃. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) → ((cprob‘𝑃)‘〈𝐴, 𝐵〉) = ((𝑃‘(𝐴 ∩ 𝐵)) / (𝑃‘𝐵))) | ||
Theorem | cndprobin 34044 | An identity linking conditional probability and intersection. (Contributed by Thierry Arnoux, 13-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑃‘𝐵) ≠ 0) → (((cprob‘𝑃)‘〈𝐴, 𝐵〉) · (𝑃‘𝐵)) = (𝑃‘(𝐴 ∩ 𝐵))) | ||
Theorem | cndprob01 34045 | The conditional probability has values in [0, 1]. (Contributed by Thierry Arnoux, 13-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑃‘𝐵) ≠ 0) → ((cprob‘𝑃)‘〈𝐴, 𝐵〉) ∈ (0[,]1)) | ||
Theorem | cndprobtot 34046 | The conditional probability given a certain event is one. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃‘𝐴) ≠ 0) → ((cprob‘𝑃)‘〈∪ dom 𝑃, 𝐴〉) = 1) | ||
Theorem | cndprobnul 34047 | The conditional probability given empty event is zero. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ (𝑃‘𝐴) ≠ 0) → ((cprob‘𝑃)‘〈∅, 𝐴〉) = 0) | ||
Theorem | cndprobprob 34048* | The conditional probability defines a probability law. (Contributed by Thierry Arnoux, 23-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
⊢ ((𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ∧ (𝑃‘𝐵) ≠ 0) → (𝑎 ∈ dom 𝑃 ↦ ((cprob‘𝑃)‘〈𝑎, 𝐵〉)) ∈ Prob) | ||
Theorem | bayesth 34049 | Bayes Theorem. (Contributed by Thierry Arnoux, 20-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
⊢ (((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃) ∧ (𝑃‘𝐴) ≠ 0 ∧ (𝑃‘𝐵) ≠ 0) → ((cprob‘𝑃)‘〈𝐴, 𝐵〉) = ((((cprob‘𝑃)‘〈𝐵, 𝐴〉) · (𝑃‘𝐴)) / (𝑃‘𝐵))) | ||
Syntax | crrv 34050 | Extend class notation with the class of real-valued random variables. |
class rRndVar | ||
Definition | df-rrv 34051 | In its generic definition, a random variable is a measurable function from a probability space to a Borel set. Here, we specifically target real-valued random variables, i.e. measurable function from a probability space to the Borel sigma-algebra on the set of real numbers. (Contributed by Thierry Arnoux, 20-Sep-2016.) (Revised by Thierry Arnoux, 25-Jan-2017.) |
⊢ rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) | ||
Theorem | rrvmbfm 34052 | A real-valued random variable is a measurable function from its sample space to the Borel sigma-algebra. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) | ||
Theorem | isrrvv 34053* | Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) | ||
Theorem | rrvvf 34054 | A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) | ||
Theorem | rrvfn 34055 | A real-valued random variable is a function over the universe. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → 𝑋 Fn ∪ dom 𝑃) | ||
Theorem | rrvdm 34056 | The domain of a random variable is the universe. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) | ||
Theorem | rrvrnss 34057 | The range of a random variable as a subset of ℝ. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → ran 𝑋 ⊆ ℝ) | ||
Theorem | rrvf2 34058 | A real-valued random variable is a function. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → 𝑋:dom 𝑋⟶ℝ) | ||
Theorem | rrvdmss 34059 | The domain of a random variable. This is useful to shorten proofs. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → ∪ dom 𝑃 ⊆ dom 𝑋) | ||
Theorem | rrvfinvima 34060* | For a real-value random variable 𝑋, any open interval in ℝ is the image of a measurable set. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃) | ||
Theorem | 0rrv 34061* | The constant function equal to zero is a random variable. (Contributed by Thierry Arnoux, 16-Jan-2017.) (Revised by Thierry Arnoux, 30-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) ⇒ ⊢ (𝜑 → (𝑥 ∈ ∪ dom 𝑃 ↦ 0) ∈ (rRndVar‘𝑃)) | ||
Theorem | rrvadd 34062 | The sum of two random variables is a random variable. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝑌 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃)) | ||
Theorem | rrvmulc 34063 | A random variable multiplied by a constant is a random variable. (Contributed by Thierry Arnoux, 17-Jan-2017.) (Revised by Thierry Arnoux, 22-May-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑋 ∘f/c · 𝐶) ∈ (rRndVar‘𝑃)) | ||
Theorem | rrvsum 34064 | An indexed sum of random variables is a random variable. (Contributed by Thierry Arnoux, 22-May-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋:ℕ⟶(rRndVar‘𝑃)) & ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑆 = (seq1( ∘f + , 𝑋)‘𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑆 ∈ (rRndVar‘𝑃)) | ||
Syntax | corvc 34065 | Extend class notation to include the preimage set mapping operator. |
class ∘RV/𝑐𝑅 | ||
Definition | df-orvc 34066* |
Define the preimage set mapping operator. In probability theory, the
notation 𝑃(𝑋 = 𝐴) denotes the probability that a
random variable
𝑋 takes the value 𝐴. We
introduce here an operator which
enables to write this in Metamath as (𝑃‘(𝑋∘RV/𝑐 I 𝐴)), and
keep a similar notation. Because with this notation (𝑋∘RV/𝑐 I 𝐴)
is a set, we can also apply it to conditional probabilities, like in
(𝑃‘(𝑋∘RV/𝑐 I 𝐴) ∣ (𝑌∘RV/𝑐 I 𝐵))).
The oRVC operator transforms a relation 𝑅 into an operation taking a random variable 𝑋 and a constant 𝐶, and returning the preimage through 𝑋 of the equivalence class of 𝐶. The most commonly used relations are: - equality: {𝑋 = 𝐴} as (𝑋∘RV/𝑐 I 𝐴) cf. ideq 5849- elementhood: {𝑋 ∈ 𝐴} as (𝑋∘RV/𝑐 E 𝐴) cf. epel 5579- less-than: {𝑋 ≤ 𝐴} as (𝑋∘RV/𝑐 ≤ 𝐴) Even though it is primarily designed to be used within probability theory and with random variables, this operator is defined on generic functions, and could be used in other fields, e.g., for continuous functions. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
⊢ ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎})) | ||
Theorem | orvcval 34067* | Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
⊢ (𝜑 → Fun 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∣ 𝑦𝑅𝐴})) | ||
Theorem | orvcval2 34068* | Another way to express the value of the preimage mapping operator. (Contributed by Thierry Arnoux, 19-Jan-2017.) |
⊢ (𝜑 → Fun 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = {𝑧 ∈ dom 𝑋 ∣ (𝑋‘𝑧)𝑅𝐴}) | ||
Theorem | elorvc 34069* | Elementhood of a preimage. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
⊢ (𝜑 → Fun 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ dom 𝑋) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) | ||
Theorem | orvcval4 34070* | The value of the preimage mapping operator can be restricted to preimages in the base set of the topology. Cf. orvcval 34067. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴})) | ||
Theorem | orvcoel 34071* | If the relation produces open sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ 𝐽) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ 𝑆) | ||
Theorem | orvccel 34072* | If the relation produces closed sets, preimage maps by a measurable function are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ (𝑆MblFnM(sigaGen‘𝐽))) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝑦 ∈ ∪ 𝐽 ∣ 𝑦𝑅𝐴} ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ 𝑆) | ||
Theorem | elorrvc 34073* | Elementhood of a preimage for a real-valued random variable. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑧 ∈ ∪ dom 𝑃) → (𝑧 ∈ (𝑋∘RV/𝑐𝑅𝐴) ↔ (𝑋‘𝑧)𝑅𝐴)) | ||
Theorem | orrvcval4 34074* | The value of the preimage mapping operator can be restricted to preimages of subsets of ℝ. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴})) | ||
Theorem | orrvcoel 34075* | If the relation produces open sets, preimage maps of a random variable are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,))) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) | ||
Theorem | orrvccel 34076* | If the relation produces closed sets, preimage maps are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (Clsd‘(topGen‘ran (,)))) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) | ||
Theorem | orvcgteel 34077 | Preimage maps produced by the "greater than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐◡ ≤ 𝐴) ∈ dom 𝑃) | ||
Theorem | orvcelval 34078 | Preimage maps produced by the membership relation. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) = (◡𝑋 “ 𝐴)) | ||
Theorem | orvcelel 34079 | Preimage maps produced by the membership relation are measurable sets. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐 E 𝐴) ∈ dom 𝑃) | ||
Theorem | dstrvval 34080* | The value of the distribution of a random variable. (Contributed by Thierry Arnoux, 9-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) & ⊢ (𝜑 → 𝐴 ∈ 𝔅ℝ) ⇒ ⊢ (𝜑 → (𝐷‘𝐴) = (𝑃‘(◡𝑋 “ 𝐴))) | ||
Theorem | dstrvprob 34081* | The distribution of a random variable is a probability law. (TODO: could be shortened using dstrvval 34080). (Contributed by Thierry Arnoux, 10-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐷 = (𝑎 ∈ 𝔅ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 E 𝑎)))) ⇒ ⊢ (𝜑 → 𝐷 ∈ Prob) | ||
Theorem | orvclteel 34082 | Preimage maps produced by the "less than or equal to" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) | ||
Theorem | dstfrvel 34083 | Elementhood of preimage maps produced by the "less than or equal to" relation. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) & ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) | ||
Theorem | dstfrvunirn 34084* | The limit of all preimage maps by the "less than or equal to" relation is the universe. (Contributed by Thierry Arnoux, 12-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) ⇒ ⊢ (𝜑 → ∪ ran (𝑛 ∈ ℕ ↦ (𝑋∘RV/𝑐 ≤ 𝑛)) = ∪ dom 𝑃) | ||
Theorem | orvclteinc 34085 | Preimage maps produced by the "less than or equal to" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ⊆ (𝑋∘RV/𝑐 ≤ 𝐵)) | ||
Theorem | dstfrvinc 34086* | A cumulative distribution function is nondecreasing. (Contributed by Thierry Arnoux, 11-Feb-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 ≤ 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) ≤ (𝐹‘𝐵)) | ||
Theorem | dstfrvclim1 34087* | The limit of the cumulative distribution function is one. (Contributed by Thierry Arnoux, 12-Feb-2017.) (Revised by Thierry Arnoux, 11-Jul-2017.) |
⊢ (𝜑 → 𝑃 ∈ Prob) & ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 ≤ 𝑥)))) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 1) | ||
Theorem | coinfliplem 34088 | Division in the extended real numbers can be used for the coin-flip example. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c /𝑒 2) | ||
Theorem | coinflipprob 34089 | The 𝑃 we defined for coin-flip is a probability law. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ 𝑃 ∈ Prob | ||
Theorem | coinflipspace 34090 | The space of our coin-flip probability. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ dom 𝑃 = 𝒫 {𝐻, 𝑇} | ||
Theorem | coinflipuniv 34091 | The universe of our coin-flip probability is {𝐻, 𝑇}. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ ∪ dom 𝑃 = {𝐻, 𝑇} | ||
Theorem | coinfliprv 34092 | The 𝑋 we defined for coin-flip is a random variable. (Contributed by Thierry Arnoux, 12-Jan-2017.) |
⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ 𝑋 ∈ (rRndVar‘𝑃) | ||
Theorem | coinflippv 34093 | The probability of heads is one-half. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ (𝑃‘{𝐻}) = (1 / 2) | ||
Theorem | coinflippvt 34094 | The probability of tails is one-half. (Contributed by Thierry Arnoux, 5-Feb-2017.) |
⊢ 𝐻 ∈ V & ⊢ 𝑇 ∈ V & ⊢ 𝐻 ≠ 𝑇 & ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) & ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} ⇒ ⊢ (𝑃‘{𝑇}) = (1 / 2) | ||
Theorem | ballotlemoex 34095* | 𝑂 is a set. (Contributed by Thierry Arnoux, 7-Dec-2016.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⇒ ⊢ 𝑂 ∈ V | ||
Theorem | ballotlem1 34096* | The size of the universe is a binomial coefficient. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⇒ ⊢ (♯‘𝑂) = ((𝑀 + 𝑁)C𝑀) | ||
Theorem | ballotlemelo 34097* | Elementhood in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⇒ ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) | ||
Theorem | ballotlem2 34098* | The probability that the first vote picked in a count is a B. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) ⇒ ⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁)) | ||
Theorem | ballotlemfval 34099* | The value of 𝐹. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ (𝜑 → 𝐶 ∈ 𝑂) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶)))) | ||
Theorem | ballotlemfelz 34100* | (𝐹‘𝐶) has values in ℤ. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} & ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) & ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) & ⊢ (𝜑 → 𝐶 ∈ 𝑂) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |