HomeHome Metamath Proof Explorer
Theorem List (p. 284 of 482)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30715)
  Hilbert Space Explorer  Hilbert Space Explorer
(30716-32238)
  Users' Mathboxes  Users' Mathboxes
(32239-48161)
 

Theorem List for Metamath Proof Explorer - 28301-28400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
16.2.5  Congruence of a series of points
 
Syntaxccgrg 28301 Declare the constant for the congruence between shapes relation.
class cgrG
 
Definitiondf-cgrg 28302* Define the relation of congruence between shapes. Definition 4.4 of [Schwabhauser] p. 35. A "shape" is a finite sequence of points, and a triangle can be represented as a shape with three points. Two shapes are congruent if all corresponding segments between all corresponding points are congruent.

Many systems of geometry define triangle congruence as requiring both segment congruence and angle congruence. Such systems, such as Hilbert's axiomatic system, typically have a primitive notion of angle congruence in addition to segment congruence. Here, angle congruence is instead a derived notion, defined later in df-cgra 28599 and expanded in iscgra 28600. This does not mean our system is weaker; dfcgrg2 28654 proves that these two definitions are equivalent, and using the Tarski definition instead (given in [Schwabhauser] p. 35) is simpler. Once two triangles are proven congruent as defined here, you can use various theorems to prove that corresponding parts of congruent triangles are congruent (CPCTC). For example, see cgr3simp1 28311, cgr3simp2 28312, cgr3simp3 28313, cgrcgra 28612, and permutation laws such as cgr3swap12 28314 and dfcgrg2 28654.

Ideally, we would define this for functions of any set, but we will use words (see df-word 14489) in most cases.

(Contributed by Thierry Arnoux, 3-Apr-2019.)

cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
 
Theoremiscgrg 28303* The congruence property for sequences of points. (Contributed by Thierry Arnoux, 3-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &    = (cgrG‘𝐺)       (𝐺𝑉 → (𝐴 𝐵 ↔ ((𝐴 ∈ (𝑃pm ℝ) ∧ 𝐵 ∈ (𝑃pm ℝ)) ∧ (dom 𝐴 = dom 𝐵 ∧ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))))
 
Theoremiscgrgd 28304* The property for two sequences 𝐴 and 𝐵 of points to be congruent. (Contributed by Thierry Arnoux, 3-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐴:𝐷𝑃)    &   (𝜑𝐵:𝐷𝑃)       (𝜑 → (𝐴 𝐵 ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗))))
 
Theoremiscgrglt 28305* The property for two sequences 𝐴 and 𝐵 of points to be congruent, where the congruence is only required for indices verifying a less-than relation. (Contributed by Thierry Arnoux, 7-Oct-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ⊆ ℝ)    &   (𝜑𝐴:𝐷𝑃)    &   (𝜑𝐵:𝐷𝑃)       (𝜑 → (𝐴 𝐵 ↔ ∀𝑖 ∈ dom 𝐴𝑗 ∈ dom 𝐴(𝑖 < 𝑗 → ((𝐴𝑖) (𝐴𝑗)) = ((𝐵𝑖) (𝐵𝑗)))))
 
Theoremtrgcgrg 28306 The property for two triangles to be congruent to each other. (Contributed by Thierry Arnoux, 3-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)       (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴 𝐵) = (𝐷 𝐸) ∧ (𝐵 𝐶) = (𝐸 𝐹) ∧ (𝐶 𝐴) = (𝐹 𝐷))))
 
Theoremtrgcgr 28307 Triangle congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))    &   (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))       (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
 
Theoremercgrg 28308 The shape congruence relation is an equivalence relation. Statement 4.4 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
𝑃 = (Base‘𝐺)       (𝐺 ∈ TarskiG → (cgrG‘𝐺) Er (𝑃pm ℝ))
 
Theoremtgcgrxfr 28309* A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))    &   (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))       (𝜑 → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
 
Theoremcgr3id 28310 Reflexivity law for three-place congruence. (Contributed by Thierry Arnoux, 28-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐴𝐵𝐶”⟩)
 
Theoremcgr3simp1 28311 Deduce segment congruence from a triangle congruence. This is a portion of the theorem that corresponding parts of congruent triangles are congruent (CPCTC), focusing on a specific segment. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)       (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
 
Theoremcgr3simp2 28312 Deduce segment congruence from a triangle congruence. This is a portion of CPCTC, focusing on a specific segment. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)       (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
 
Theoremcgr3simp3 28313 Deduce segment congruence from a triangle congruence. This is a portion of CPCTC, focusing on a specific segment. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)       (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))
 
Theoremcgr3swap12 28314 Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)       (𝜑 → ⟨“𝐵𝐴𝐶”⟩ ⟨“𝐸𝐷𝐹”⟩)
 
Theoremcgr3swap23 28315 Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)       (𝜑 → ⟨“𝐴𝐶𝐵”⟩ ⟨“𝐷𝐹𝐸”⟩)
 
Theoremcgr3swap13 28316 Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 3-Oct-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)       (𝜑 → ⟨“𝐶𝐵𝐴”⟩ ⟨“𝐹𝐸𝐷”⟩)
 
Theoremcgr3rotr 28317 Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)       (𝜑 → ⟨“𝐶𝐴𝐵”⟩ ⟨“𝐹𝐷𝐸”⟩)
 
Theoremcgr3rotl 28318 Permutation law for three-place congruence. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)       (𝜑 → ⟨“𝐵𝐶𝐴”⟩ ⟨“𝐸𝐹𝐷”⟩)
 
Theoremtrgcgrcom 28319 Commutative law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)       (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ⟨“𝐴𝐵𝐶”⟩)
 
Theoremcgr3tr 28320 Transitivity law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)    &   (𝜑𝐽𝑃)    &   (𝜑𝐾𝑃)    &   (𝜑𝐿𝑃)    &   (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ⟨“𝐽𝐾𝐿”⟩)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐽𝐾𝐿”⟩)
 
Theoremtgbtwnxfr 28321 A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))       (𝜑𝐸 ∈ (𝐷𝐼𝐹))
 
Theoremtgcgr4 28322 Two quadrilaterals to be congruent to each other if one triangle formed by their vertices is, and the additional points are equidistant too. (Contributed by Thierry Arnoux, 8-Oct-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝑊𝑃)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)       (𝜑 → (⟨“𝐴𝐵𝐶𝐷”⟩ ⟨“𝑊𝑋𝑌𝑍”⟩ ↔ (⟨“𝐴𝐵𝐶”⟩ ⟨“𝑊𝑋𝑌”⟩ ∧ ((𝐴 𝐷) = (𝑊 𝑍) ∧ (𝐵 𝐷) = (𝑋 𝑍) ∧ (𝐶 𝐷) = (𝑌 𝑍)))))
 
16.2.6  Motions
 
Syntaxcismt 28323 Declare the constant for the isometry builder.
class Ismt
 
Definitiondf-ismt 28324* Define the set of isometries between two structures. Definition 4.8 of [Schwabhauser] p. 36. See isismt 28325. (Contributed by Thierry Arnoux, 13-Dec-2019.)
Ismt = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎(dist‘𝑔)𝑏))})
 
Theoremisismt 28325* Property of being an isometry. Compare with isismty 37209. (Contributed by Thierry Arnoux, 13-Dec-2019.)
𝐵 = (Base‘𝐺)    &   𝑃 = (Base‘𝐻)    &   𝐷 = (dist‘𝐺)    &    = (dist‘𝐻)       ((𝐺𝑉𝐻𝑊) → (𝐹 ∈ (𝐺Ismt𝐻) ↔ (𝐹:𝐵1-1-onto𝑃 ∧ ∀𝑎𝐵𝑏𝐵 ((𝐹𝑎) (𝐹𝑏)) = (𝑎𝐷𝑏))))
 
Theoremismot 28326* Property of being an isometry mapping to the same space. In geometry, this is also called a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)       (𝐺𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
 
Theoremmotcgr 28327 Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐹 ∈ (𝐺Ismt𝐺))       (𝜑 → ((𝐹𝐴) (𝐹𝐵)) = (𝐴 𝐵))
 
Theoremidmot 28328 The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺𝑉)       (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
 
Theoremmotf1o 28329 Motions are bijections. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐹 ∈ (𝐺Ismt𝐺))       (𝜑𝐹:𝑃1-1-onto𝑃)
 
Theoremmotcl 28330 Closure of motions. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐹 ∈ (𝐺Ismt𝐺))    &   (𝜑𝐴𝑃)       (𝜑 → (𝐹𝐴) ∈ 𝑃)
 
Theoremmotco 28331 The composition of two motions is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐹 ∈ (𝐺Ismt𝐺))    &   (𝜑𝐻 ∈ (𝐺Ismt𝐺))       (𝜑 → (𝐹𝐻) ∈ (𝐺Ismt𝐺))
 
Theoremcnvmot 28332 The converse of a motion is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐹 ∈ (𝐺Ismt𝐺))       (𝜑𝐹 ∈ (𝐺Ismt𝐺))
 
Theoremmotplusg 28333* The operation for motions is their composition. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺𝑉)    &   𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}    &   (𝜑𝐹 ∈ (𝐺Ismt𝐺))    &   (𝜑𝐻 ∈ (𝐺Ismt𝐺))       (𝜑 → (𝐹(+g𝐼)𝐻) = (𝐹𝐻))
 
Theoremmotgrp 28334* The motions of a geometry form a group with respect to function composition, called the Isometry group. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺𝑉)    &   𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}       (𝜑𝐼 ∈ Grp)
 
Theoremmotcgrg 28335* Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺𝑉)    &   𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}    &    = (cgrG‘𝐺)    &   (𝜑𝑇 ∈ Word 𝑃)    &   (𝜑𝐹 ∈ (𝐺Ismt𝐺))       (𝜑 → (𝐹𝑇) 𝑇)
 
Theoremmotcgr3 28336 Property of a motion: distances are preserved, special case of triangles. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &    = (cgrG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷 = (𝐻𝐴))    &   (𝜑𝐸 = (𝐻𝐵))    &   (𝜑𝐹 = (𝐻𝐶))    &   (𝜑𝐻 ∈ (𝐺Ismt𝐺))       (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐸𝐹”⟩)
 
16.2.7  Colinearity
 
Theoremtglng 28337* Lines of a Tarski Geometry. This relates to both Definition 4.10 of [Schwabhauser] p. 36. and Definition 6.14 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 28-Mar-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)       (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
 
Theoremtglnfn 28338 Lines as functions. (Contributed by Thierry Arnoux, 25-May-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)       (𝐺 ∈ TarskiG → 𝐿 Fn ((𝑃 × 𝑃) ∖ I ))
 
Theoremtglnunirn 28339 Lines are sets of points. (Contributed by Thierry Arnoux, 25-May-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)       (𝐺 ∈ TarskiG → ran 𝐿𝑃)
 
Theoremtglnpt 28340 Lines are sets of points. (Contributed by Thierry Arnoux, 17-Oct-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴 ∈ ran 𝐿)    &   (𝜑𝑋𝐴)       (𝜑𝑋𝑃)
 
Theoremtglngne 28341 It takes two different points to form a line. (Contributed by Thierry Arnoux, 6-Aug-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍 ∈ (𝑋𝐿𝑌))       (𝜑𝑋𝑌)
 
Theoremtglngval 28342* The line going through points 𝑋 and 𝑌. (Contributed by Thierry Arnoux, 28-Mar-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑋𝑌)       (𝜑 → (𝑋𝐿𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
 
Theoremtglnssp 28343 Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑋𝑌)       (𝜑 → (𝑋𝐿𝑌) ⊆ 𝑃)
 
Theoremtgellng 28344 Property of lying on the line going through points 𝑋 and 𝑌. Definition 4.10 of [Schwabhauser] p. 36. We choose the notation 𝑍 ∈ (𝑋(LineG‘𝐺)𝑌) instead of "colinear" because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 28-Mar-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑋𝑌)    &   (𝜑𝑍𝑃)       (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
 
Theoremtgcolg 28345 We choose the notation (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) instead of "colinear" in order to avoid defining an additional symbol for colinearity because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 25-May-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)       (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
 
Theorembtwncolg1 28346 Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &   (𝜑𝑍 ∈ (𝑋𝐼𝑌))       (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
 
Theorembtwncolg2 28347 Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &   (𝜑𝑋 ∈ (𝑍𝐼𝑌))       (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
 
Theorembtwncolg3 28348 Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &   (𝜑𝑌 ∈ (𝑋𝐼𝑍))       (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
 
Theoremcolcom 28349 Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &   (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))       (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))
 
Theoremcolrot1 28350 Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &   (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))       (𝜑 → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
 
Theoremcolrot2 28351 Rotating the points defining a line. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &   (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))       (𝜑 → (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))
 
Theoremncolcom 28352 Swapping non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &   (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))       (𝜑 → ¬ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))
 
Theoremncolrot1 28353 Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &   (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))       (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
 
Theoremncolrot2 28354 Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &   (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))       (𝜑 → ¬ (𝑌 ∈ (𝑍𝐿𝑋) ∨ 𝑍 = 𝑋))
 
Theoremtgdim01ln 28355 In geometries of dimension less than two, then any three points are colinear. (Contributed by Thierry Arnoux, 27-Aug-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &   (𝜑 → ¬ 𝐺DimTarskiG≥2)       (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
 
Theoremncoltgdim2 28356 If there are three non-colinear points, then the dimension is at least two. Converse of tglowdim2l 28441. (Contributed by Thierry Arnoux, 23-Feb-2020.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &   (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))       (𝜑𝐺DimTarskiG≥2)
 
Theoremlnxfr 28357 Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &    = (cgrG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))    &   (𝜑 → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)       (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
 
Theoremlnext 28358* Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &    = (cgrG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &    = (dist‘𝐺)    &   (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))    &   (𝜑 → (𝑋 𝑌) = (𝐴 𝐵))       (𝜑 → ∃𝑐𝑃 ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝑐”⟩)
 
Theoremtgfscgr 28359 Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &    = (cgrG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &    = (dist‘𝐺)    &   (𝜑𝑇𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))    &   (𝜑 → ⟨“𝑋𝑌𝑍”⟩ ⟨“𝐴𝐵𝐶”⟩)    &   (𝜑 → (𝑋 𝑇) = (𝐴 𝐷))    &   (𝜑 → (𝑌 𝑇) = (𝐵 𝐷))    &   (𝜑𝑋𝑌)       (𝜑 → (𝑍 𝑇) = (𝐶 𝐷))
 
Theoremlncgr 28360 Congruence rule for lines. Theorem 4.17 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 28-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &    = (cgrG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &    = (dist‘𝐺)    &   (𝜑𝑋𝑌)    &   (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))    &   (𝜑 → (𝑋 𝐴) = (𝑋 𝐵))    &   (𝜑 → (𝑌 𝐴) = (𝑌 𝐵))       (𝜑 → (𝑍 𝐴) = (𝑍 𝐵))
 
Theoremlnid 28361 Identity law for points on lines. Theorem 4.18 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &    = (cgrG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &    = (dist‘𝐺)    &   (𝜑𝑋𝑌)    &   (𝜑 → (𝑌 ∈ (𝑋𝐿𝑍) ∨ 𝑋 = 𝑍))    &   (𝜑 → (𝑋 𝑍) = (𝑋 𝐴))    &   (𝜑 → (𝑌 𝑍) = (𝑌 𝐴))       (𝜑𝑍 = 𝐴)
 
Theoremtgidinside 28362 Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Thierry Arnoux, 28-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑𝑍𝑃)    &    = (cgrG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &    = (dist‘𝐺)    &   (𝜑𝑍 ∈ (𝑋𝐼𝑌))    &   (𝜑 → (𝑋 𝑍) = (𝑋 𝐴))    &   (𝜑 → (𝑌 𝑍) = (𝑌 𝐴))       (𝜑𝑍 = 𝐴)
 
16.2.8  Connectivity of betweenness
 
Theoremtgbtwnconn1lem1 28363 Lemma for tgbtwnconn1 28366. (Contributed by Thierry Arnoux, 30-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))    &   (𝜑𝐵 ∈ (𝐴𝐼𝐷))    &    = (dist‘𝐺)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑𝐻𝑃)    &   (𝜑𝐽𝑃)    &   (𝜑𝐷 ∈ (𝐴𝐼𝐸))    &   (𝜑𝐶 ∈ (𝐴𝐼𝐹))    &   (𝜑𝐸 ∈ (𝐴𝐼𝐻))    &   (𝜑𝐹 ∈ (𝐴𝐼𝐽))    &   (𝜑 → (𝐸 𝐷) = (𝐶 𝐷))    &   (𝜑 → (𝐶 𝐹) = (𝐶 𝐷))    &   (𝜑 → (𝐸 𝐻) = (𝐵 𝐶))    &   (𝜑 → (𝐹 𝐽) = (𝐵 𝐷))       (𝜑𝐻 = 𝐽)
 
Theoremtgbtwnconn1lem2 28364 Lemma for tgbtwnconn1 28366. (Contributed by Thierry Arnoux, 30-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))    &   (𝜑𝐵 ∈ (𝐴𝐼𝐷))    &    = (dist‘𝐺)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑𝐻𝑃)    &   (𝜑𝐽𝑃)    &   (𝜑𝐷 ∈ (𝐴𝐼𝐸))    &   (𝜑𝐶 ∈ (𝐴𝐼𝐹))    &   (𝜑𝐸 ∈ (𝐴𝐼𝐻))    &   (𝜑𝐹 ∈ (𝐴𝐼𝐽))    &   (𝜑 → (𝐸 𝐷) = (𝐶 𝐷))    &   (𝜑 → (𝐶 𝐹) = (𝐶 𝐷))    &   (𝜑 → (𝐸 𝐻) = (𝐵 𝐶))    &   (𝜑 → (𝐹 𝐽) = (𝐵 𝐷))       (𝜑 → (𝐸 𝐹) = (𝐶 𝐷))
 
Theoremtgbtwnconn1lem3 28365 Lemma for tgbtwnconn1 28366. (Contributed by Thierry Arnoux, 30-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))    &   (𝜑𝐵 ∈ (𝐴𝐼𝐷))    &    = (dist‘𝐺)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑𝐻𝑃)    &   (𝜑𝐽𝑃)    &   (𝜑𝐷 ∈ (𝐴𝐼𝐸))    &   (𝜑𝐶 ∈ (𝐴𝐼𝐹))    &   (𝜑𝐸 ∈ (𝐴𝐼𝐻))    &   (𝜑𝐹 ∈ (𝐴𝐼𝐽))    &   (𝜑 → (𝐸 𝐷) = (𝐶 𝐷))    &   (𝜑 → (𝐶 𝐹) = (𝐶 𝐷))    &   (𝜑 → (𝐸 𝐻) = (𝐵 𝐶))    &   (𝜑 → (𝐹 𝐽) = (𝐵 𝐷))    &   (𝜑𝑋𝑃)    &   (𝜑𝑋 ∈ (𝐶𝐼𝐸))    &   (𝜑𝑋 ∈ (𝐷𝐼𝐹))    &   (𝜑𝐶𝐸)       (𝜑𝐷 = 𝐹)
 
Theoremtgbtwnconn1 28366 Connectivity law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. In earlier presentations of Tarski's axioms, this theorem appeared as an additional axiom. It was derived from the other axioms by Gupta, 1965. (Contributed by Thierry Arnoux, 30-Apr-2019.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))    &   (𝜑𝐵 ∈ (𝐴𝐼𝐷))       (𝜑 → (𝐶 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝐶)))
 
Theoremtgbtwnconn2 28367 Another connectivity law for betweenness. Theorem 5.2 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))    &   (𝜑𝐵 ∈ (𝐴𝐼𝐷))       (𝜑 → (𝐶 ∈ (𝐵𝐼𝐷) ∨ 𝐷 ∈ (𝐵𝐼𝐶)))
 
Theoremtgbtwnconn3 28368 Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐷))    &   (𝜑𝐶 ∈ (𝐴𝐼𝐷))       (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
 
Theoremtgbtwnconnln3 28369 Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐷))    &   (𝜑𝐶 ∈ (𝐴𝐼𝐷))    &   𝐿 = (LineG‘𝐺)       (𝜑 → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
 
Theoremtgbtwnconn22 28370 Double connectivity law for betweenness. (Contributed by Thierry Arnoux, 1-Dec-2019.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐵)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))    &   (𝜑𝐵 ∈ (𝐴𝐼𝐷))    &   (𝜑𝐵 ∈ (𝐶𝐼𝐸))       (𝜑𝐵 ∈ (𝐷𝐼𝐸))
 
Theoremtgbtwnconnln1 28371 Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))    &   (𝜑𝐵 ∈ (𝐴𝐼𝐷))       (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
 
Theoremtgbtwnconnln2 28372 Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))    &   (𝜑𝐵 ∈ (𝐴𝐼𝐷))       (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
 
16.2.9  Less-than relation in geometric congruences
 
Syntaxcleg 28373 Less-than relation for geometric congruences.
class ≤G
 
Definitiondf-leg 28374* Define the less-than relationship between geometric distance congruence classes. See legval 28375. (Contributed by Thierry Arnoux, 21-Jun-2019.)
≤G = (𝑔 ∈ V ↦ {⟨𝑒, 𝑓⟩ ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]𝑥𝑝𝑦𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))})
 
Theoremlegval 28375* Value of the less-than relationship. (Contributed by Thierry Arnoux, 21-Jun-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)       (𝜑 = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))})
 
Theoremlegov 28376* Value of the less-than relationship. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)       (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑧𝑃 (𝑧 ∈ (𝐶𝐼𝐷) ∧ (𝐴 𝐵) = (𝐶 𝑧))))
 
Theoremlegov2 28377* An equivalent definition of the less-than relationship. Definition 5.5 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)       (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ∃𝑥𝑃 (𝐵 ∈ (𝐴𝐼𝑥) ∧ (𝐴 𝑥) = (𝐶 𝐷))))
 
Theoremlegid 28378 Reflexivity of the less-than relationship. Proposition 5.7 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐴 𝐵) (𝐴 𝐵))
 
Theorembtwnleg 28379 Betweenness implies less-than relation. (Contributed by Thierry Arnoux, 3-Jul-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))       (𝜑 → (𝐴 𝐵) (𝐴 𝐶))
 
Theoremlegtrd 28380 Transitivity of the less-than relationship. Proposition 5.8 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → (𝐴 𝐵) (𝐶 𝐷))    &   (𝜑 → (𝐶 𝐷) (𝐸 𝐹))       (𝜑 → (𝐴 𝐵) (𝐸 𝐹))
 
Theoremlegtri3 28381 Equality from the less-than relationship. Proposition 5.9 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑 → (𝐴 𝐵) (𝐶 𝐷))    &   (𝜑 → (𝐶 𝐷) (𝐴 𝐵))       (𝜑 → (𝐴 𝐵) = (𝐶 𝐷))
 
Theoremlegtrid 28382 Trichotomy law for the less-than relationship. Proposition 5.10 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)       (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ∨ (𝐶 𝐷) (𝐴 𝐵)))
 
Theoremleg0 28383 Degenerated (zero-length) segments are minimal. Proposition 5.11 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)       (𝜑 → (𝐴 𝐴) (𝐶 𝐷))
 
Theoremlegeq 28384 Deduce equality from "less than" null segments. (Contributed by Thierry Arnoux, 12-Aug-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑 → (𝐴 𝐵) (𝐶 𝐶))       (𝜑𝐴 = 𝐵)
 
Theoremlegbtwn 28385 Deduce betweenness from "less than" relation. Corresponds loosely to Proposition 6.13 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 25-Aug-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))    &   (𝜑 → (𝐶 𝐴) (𝐶 𝐵))       (𝜑𝐴 ∈ (𝐶𝐼𝐵))
 
Theoremtgcgrsub2 28386 Removing identical parts from the end of a line segment preserves congruence. In this version the order of points is not known. (Contributed by Thierry Arnoux, 3-Apr-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))    &   (𝜑 → (𝐸 ∈ (𝐷𝐼𝐹) ∨ 𝐹 ∈ (𝐷𝐼𝐸)))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))       (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
 
Theoremltgseg 28387* The set 𝐸 denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐸 = ( “ (𝑃 × 𝑃))    &   (𝜑 → Fun )    &   (𝜑𝐴𝐸)       (𝜑 → ∃𝑥𝑃𝑦𝑃 𝐴 = (𝑥 𝑦))
 
Theoremltgov 28388 Strict "shorter than" geometric relation between segments. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐸 = ( “ (𝑃 × 𝑃))    &   (𝜑 → Fun )    &    < = (( 𝐸) ∖ I )    &   (𝜑 → (𝑃 × 𝑃) ⊆ dom )    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
 
Theoremlegov3 28389 An equivalent definition of the less-than relationship, from the strict relation. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐸 = ( “ (𝑃 × 𝑃))    &   (𝜑 → Fun )    &    < = (( 𝐸) ∖ I )    &   (𝜑 → (𝑃 × 𝑃) ⊆ dom )    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → ((𝐴 𝐵) (𝐶 𝐷) ↔ ((𝐴 𝐵) < (𝐶 𝐷) ∨ (𝐴 𝐵) = (𝐶 𝐷))))
 
Theoremlegso 28390 The "shorter than" relation induces an order on pairs. Remark 5.13 of [Schwabhauser] p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (≤G‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐸 = ( “ (𝑃 × 𝑃))    &   (𝜑 → Fun )    &    < = (( 𝐸) ∖ I )    &   (𝜑 → (𝑃 × 𝑃) ⊆ dom )       (𝜑< Or 𝐸)
 
16.2.10  Rays
 
Syntaxchlg 28391 Function producing the relation "belong to the same half-line".
class hlG
 
Definitiondf-hlg 28392* Define the function producting the relation "belong to the same half-line". (Contributed by Thierry Arnoux, 15-Aug-2020.)
hlG = (𝑔 ∈ V ↦ (𝑐 ∈ (Base‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))}))
 
Theoremishlg 28393 Rays : Definition 6.1 of [Schwabhauser] p. 43. With this definition, 𝐴(𝐾𝐶)𝐵 means that 𝐴 and 𝐵 are on the same ray with initial point 𝐶. This follows the same notation as Schwabhauser where rays are first defined as a relation. It is possible to recover the ray itself using e.g., ((𝐾𝐶) “ {𝐴}). (Contributed by Thierry Arnoux, 21-Dec-2019.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺𝑉)       (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
 
Theoremhlcomb 28394 The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺𝑉)       (𝜑 → (𝐴(𝐾𝐶)𝐵𝐵(𝐾𝐶)𝐴))
 
Theoremhlcomd 28395 The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺𝑉)    &   (𝜑𝐴(𝐾𝐶)𝐵)       (𝜑𝐵(𝐾𝐶)𝐴)
 
Theoremhlne1 28396 The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺𝑉)    &   (𝜑𝐴(𝐾𝐶)𝐵)       (𝜑𝐴𝐶)
 
Theoremhlne2 28397 The half-line relation implies inequality. (Contributed by Thierry Arnoux, 22-Feb-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺𝑉)    &   (𝜑𝐴(𝐾𝐶)𝐵)       (𝜑𝐵𝐶)
 
Theoremhlln 28398 The half-line relation implies colinearity, part of Theorem 6.4 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐴(𝐾𝐶)𝐵)       (𝜑𝐴 ∈ (𝐵𝐿𝐶))
 
Theoremhleqnid 28399 The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺 ∈ TarskiG)       (𝜑 → ¬ 𝐴(𝐾𝐴)𝐵)
 
Theoremhlid 28400 The half-line relation is reflexive. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝐶)       (𝜑𝐴(𝐾𝐶)𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48161
  Copyright terms: Public domain < Previous  Next >