![]() |
Metamath
Proof Explorer Theorem List (p. 422 of 482) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30715) |
![]() (30716-32238) |
![]() (32239-48161) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | diophrw 42101* | Renaming and adding unused witness variables does not change the Diophantine set coded by a polynomial. (Contributed by Stefan O'Rear, 7-Oct-2014.) |
⊢ ((𝑆 ∈ V ∧ 𝑀:𝑇–1-1→𝑆 ∧ (𝑀 ↾ 𝑂) = ( I ↾ 𝑂)) → {𝑎 ∣ ∃𝑏 ∈ (ℕ0 ↑m 𝑆)(𝑎 = (𝑏 ↾ 𝑂) ∧ ((𝑑 ∈ (ℤ ↑m 𝑆) ↦ (𝑃‘(𝑑 ∘ 𝑀)))‘𝑏) = 0)} = {𝑎 ∣ ∃𝑐 ∈ (ℕ0 ↑m 𝑇)(𝑎 = (𝑐 ↾ 𝑂) ∧ (𝑃‘𝑐) = 0)}) | ||
Theorem | eldioph2lem1 42102* | Lemma for eldioph2 42104. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ≥‘𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto→𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) | ||
Theorem | eldioph2lem2 42103* | Lemma for eldioph2 42104. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ (((𝑁 ∈ ℕ0 ∧ ¬ 𝑆 ∈ Fin) ∧ ((1...𝑁) ⊆ 𝑆 ∧ 𝐴 ∈ (ℤ≥‘𝑁))) → ∃𝑐(𝑐:(1...𝐴)–1-1→𝑆 ∧ (𝑐 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) | ||
Theorem | eldioph2 42104* | Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 42094. (Contributed by Stefan O'Rear, 8-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
Theorem | eldioph2b 42105* | While Diophantine sets were defined to have a finite number of witness variables consequtively following the observable variables, this is not necessary; they can equivalently be taken to use any witness set (𝑆 ∖ (1...𝑁)). For instance, in diophin 42114 we use this to take the two input sets to have disjoint witness sets. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
⊢ (((𝑁 ∈ ℕ0 ∧ 𝑆 ∈ V) ∧ (¬ 𝑆 ∈ Fin ∧ (1...𝑁) ⊆ 𝑆)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘𝑆)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
Theorem | eldiophelnn0 42106 | Remove antecedent on 𝐵 from Diophantine set constructors. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐵 ∈ ℕ0) | ||
Theorem | eldioph3b 42107* | Define Diophantine sets in terms of polynomials with variables indexed by ℕ. This avoids a quantifier over the number of witness variables and will be easier to use than eldiophb 42099 in most cases. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝‘𝑢) = 0)})) | ||
Theorem | eldioph3 42108* | Inference version of eldioph3b 42107 with quantifier expanded. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘ℕ)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0 ↑m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) | ||
Theorem | ellz1 42109 | Membership in a lower set of integers. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ (𝐵 ∈ ℤ → (𝐴 ∈ (ℤ ∖ (ℤ≥‘(𝐵 + 1))) ↔ (𝐴 ∈ ℤ ∧ 𝐴 ≤ 𝐵))) | ||
Theorem | lzunuz 42110 | The union of a lower set of integers and an upper set of integers which abut or overlap is all of the integers. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≤ (𝐴 + 1)) → ((ℤ ∖ (ℤ≥‘(𝐴 + 1))) ∪ (ℤ≥‘𝐵)) = ℤ) | ||
Theorem | fz1eqin 42111 | Express a one-based finite range as the intersection of lower integers with ℕ. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) | ||
Theorem | lzenom 42112 | Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝑁 ∈ ℤ → (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ≈ ω) | ||
Theorem | elmapresaunres2 42113 | fresaunres2 6763 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
⊢ ((𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐵) ∧ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐺 ↾ (𝐴 ∩ 𝐵))) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) | ||
Theorem | diophin 42114 | If two sets are Diophantine, so is their intersection. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∩ 𝐵) ∈ (Dioph‘𝑁)) | ||
Theorem | diophun 42115 | If two sets are Diophantine, so is their union. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ ((𝐴 ∈ (Dioph‘𝑁) ∧ 𝐵 ∈ (Dioph‘𝑁)) → (𝐴 ∪ 𝐵) ∈ (Dioph‘𝑁)) | ||
Theorem | eldiophss 42116 | Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) | ||
Theorem | diophrex 42117* | Projecting a Diophantine set by removing a coordinate results in a Diophantine set. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁) ∧ 𝑆 ∈ (Dioph‘𝑀)) → {𝑡 ∣ ∃𝑢 ∈ 𝑆 𝑡 = (𝑢 ↾ (1...𝑁))} ∈ (Dioph‘𝑁)) | ||
Theorem | eq0rabdioph 42118* | This is the first of a number of theorems which allow sets to be proven Diophantine by syntactic induction, and models the correspondence between Diophantine sets and monotone existential first-order logic. This first theorem shows that the zero set of an implicit polynomial is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 0} ∈ (Dioph‘𝑁)) | ||
Theorem | eqrabdioph 42119* | Diophantine set builder for equality of polynomial expressions. Note that the two expressions need not be nonnegative; only variables are so constrained. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 = 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | 0dioph 42120 | The null set is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝐴 ∈ ℕ0 → ∅ ∈ (Dioph‘𝐴)) | ||
Theorem | vdioph 42121 | The "universal" set (as large as possible given eldiophss 42116) is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (𝐴 ∈ ℕ0 → (ℕ0 ↑m (1...𝐴)) ∈ (Dioph‘𝐴)) | ||
Theorem | anrabdioph 42122* | Diophantine set builder for conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝜑 ∧ 𝜓)} ∈ (Dioph‘𝑁)) | ||
Theorem | orrabdioph 42123* | Diophantine set builder for disjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝜑 ∨ 𝜓)} ∈ (Dioph‘𝑁)) | ||
Theorem | 3anrabdioph 42124* | Diophantine set builder for ternary conjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜒} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝜑 ∧ 𝜓 ∧ 𝜒)} ∈ (Dioph‘𝑁)) | ||
Theorem | 3orrabdioph 42125* | Diophantine set builder for ternary disjunctions. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ (({𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜑} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁) ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜒} ∈ (Dioph‘𝑁)) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ (𝜑 ∨ 𝜓 ∨ 𝜒)} ∈ (Dioph‘𝑁)) | ||
Theorem | 2sbcrex 42126* | Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) | ||
Theorem | sbcrexgOLD 42127* | Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 18-Aug-2018. Use sbcrex 3865 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | ||
Theorem | 2sbcrexOLD 42128* | Exchange an existential quantifier with two substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7456 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎][𝐵 / 𝑏]𝜑) | ||
Theorem | sbc2rex 42129* | Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑) | ||
Theorem | sbc2rexgOLD 42130* | Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7456 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 [𝐴 / 𝑎]𝜑)) | ||
Theorem | sbc4rex 42131* | Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by NM, 24-Aug-2018.) |
⊢ ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 [𝐴 / 𝑎]𝜑) | ||
Theorem | sbc4rexgOLD 42132* | Exchange a substitution with four existentials. (Contributed by Stefan O'Rear, 11-Oct-2014.) Obsolete as of 24-Aug-2018. Use csbov123 7456 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑎]∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 𝜑 ↔ ∃𝑏 ∈ 𝐵 ∃𝑐 ∈ 𝐶 ∃𝑑 ∈ 𝐷 ∃𝑒 ∈ 𝐸 [𝐴 / 𝑎]𝜑)) | ||
Theorem | sbcrot3 42133* | Rotate a sequence of three explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐴 / 𝑎]𝜑) | ||
Theorem | sbcrot5 42134* | Rotate a sequence of five explicit substitutions. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒]𝜑 ↔ [𝐵 / 𝑏][𝐶 / 𝑐][𝐷 / 𝑑][𝐸 / 𝑒][𝐴 / 𝑎]𝜑) | ||
Theorem | sbccomieg 42135* | Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ (𝑎 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ([𝐴 / 𝑎][𝐵 / 𝑏]𝜑 ↔ [𝐶 / 𝑏][𝐴 / 𝑎]𝜑) | ||
Theorem | rexrabdioph 42136* | Diophantine set builder for existential quantification. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ (𝑣 = (𝑡‘𝑀) → (𝜓 ↔ 𝜒)) & ⊢ (𝑢 = (𝑡 ↾ (1...𝑁)) → (𝜒 ↔ 𝜑)) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜓} ∈ (Dioph‘𝑁)) | ||
Theorem | rexfrabdioph 42137* | Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | 2rexfrabdioph 42138* | Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝐿)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤]𝜑} ∈ (Dioph‘𝐿)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | 3rexfrabdioph 42139* | Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | 4rexfrabdioph 42140* | Diophantine set builder for existential quantifier, explicit substitution, four variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) & ⊢ 𝐽 = (𝐾 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝐽)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦]𝜑} ∈ (Dioph‘𝐽)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | 6rexfrabdioph 42141* | Diophantine set builder for existential quantifier, explicit substitution, six variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) & ⊢ 𝐽 = (𝐾 + 1) & ⊢ 𝐼 = (𝐽 + 1) & ⊢ 𝐻 = (𝐼 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝐻)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑡‘𝐼) / 𝑧][(𝑡‘𝐻) / 𝑝]𝜑} ∈ (Dioph‘𝐻)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0 ∃𝑧 ∈ ℕ0 ∃𝑝 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | 7rexfrabdioph 42142* | Diophantine set builder for existential quantifier, explicit substitution, seven variables. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ 𝑀 = (𝑁 + 1) & ⊢ 𝐿 = (𝑀 + 1) & ⊢ 𝐾 = (𝐿 + 1) & ⊢ 𝐽 = (𝐾 + 1) & ⊢ 𝐼 = (𝐽 + 1) & ⊢ 𝐻 = (𝐼 + 1) & ⊢ 𝐺 = (𝐻 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑m (1...𝐺)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑡‘𝐽) / 𝑦][(𝑡‘𝐼) / 𝑧][(𝑡‘𝐻) / 𝑝][(𝑡‘𝐺) / 𝑞]𝜑} ∈ (Dioph‘𝐺)) → {𝑢 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0 ∃𝑧 ∈ ℕ0 ∃𝑝 ∈ ℕ0 ∃𝑞 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) | ||
Theorem | rabdiophlem1 42143* | Lemma for arithmetic diophantine sets. Convert polynomial-ness of an expression into a constraint suitable for ralimi 3078. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ ((𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑m (1...𝑁))𝐴 ∈ ℤ) | ||
Theorem | rabdiophlem2 42144* | Lemma for arithmetic diophantine sets. Reuse a polynomial expression under a new quantifier. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑢 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑡 ∈ (ℤ ↑m (1...𝑀)) ↦ ⦋(𝑡 ↾ (1...𝑁)) / 𝑢⦌𝐴) ∈ (mzPoly‘(1...𝑀))) | ||
Theorem | elnn0rabdioph 42145* | Diophantine set builder for nonnegativity constraints. The first builder which uses a witness variable internally; an expression is nonnegative if there is a nonnegative integer equal to it. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∈ ℕ0} ∈ (Dioph‘𝑁)) | ||
Theorem | rexzrexnn0 42146* | Rewrite an existential quantification restricted to integers into an existential quantification restricted to naturals. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∃𝑥 ∈ ℤ 𝜑 ↔ ∃𝑦 ∈ ℕ0 (𝜓 ∨ 𝜒)) | ||
Theorem | lerabdioph 42147* | Diophantine set builder for the "less than or equal to" relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≤ 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | eluzrabdioph 42148* | Diophantine set builder for membership in a fixed upper set of integers. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∈ (ℤ≥‘𝑀)} ∈ (Dioph‘𝑁)) | ||
Theorem | elnnrabdioph 42149* | Diophantine set builder for positivity. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∈ ℕ} ∈ (Dioph‘𝑁)) | ||
Theorem | ltrabdioph 42150* | Diophantine set builder for the strict less than relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 < 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | nerabdioph 42151* | Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulas can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ≠ 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | dvdsrabdioph 42152* | Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑m (1...𝑁)) ↦ 𝐵) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝐴 ∥ 𝐵} ∈ (Dioph‘𝑁)) | ||
Theorem | eldioph4b 42153* | Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ 𝑊 ∈ V & ⊢ ¬ 𝑊 ∈ Fin & ⊢ (𝑊 ∩ ℕ) = ∅ ⇒ ⊢ (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑝‘(𝑡 ∪ 𝑤)) = 0})) | ||
Theorem | eldioph4i 42154* | Forward-only version of eldioph4b 42153. (Contributed by Stefan O'Rear, 16-Oct-2014.) |
⊢ 𝑊 ∈ V & ⊢ ¬ 𝑊 ∈ Fin & ⊢ (𝑊 ∩ ℕ) = ∅ ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))) → {𝑡 ∈ (ℕ0 ↑m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0 ↑m 𝑊)(𝑃‘(𝑡 ∪ 𝑤)) = 0} ∈ (Dioph‘𝑁)) | ||
Theorem | diophren 42155* | Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
⊢ ((𝑆 ∈ (Dioph‘𝑁) ∧ 𝑀 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶(1...𝑀)) → {𝑎 ∈ (ℕ0 ↑m (1...𝑀)) ∣ (𝑎 ∘ 𝐹) ∈ 𝑆} ∈ (Dioph‘𝑀)) | ||
Theorem | rabrenfdioph 42156* | Change variable numbers in a Diophantine class abstraction using explicit substitution. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ ((𝐵 ∈ ℕ0 ∧ 𝐹:(1...𝐴)⟶(1...𝐵) ∧ {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 𝜑} ∈ (Dioph‘𝐴)) → {𝑏 ∈ (ℕ0 ↑m (1...𝐵)) ∣ [(𝑏 ∘ 𝐹) / 𝑎]𝜑} ∈ (Dioph‘𝐵)) | ||
Theorem | rabren3dioph 42157* | Change variable numbers in a 3-variable Diophantine class abstraction. (Contributed by Stefan O'Rear, 17-Oct-2014.) |
⊢ (((𝑎‘1) = (𝑏‘𝑋) ∧ (𝑎‘2) = (𝑏‘𝑌) ∧ (𝑎‘3) = (𝑏‘𝑍)) → (𝜑 ↔ 𝜓)) & ⊢ 𝑋 ∈ (1...𝑁) & ⊢ 𝑌 ∈ (1...𝑁) & ⊢ 𝑍 ∈ (1...𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0 ↑m (1...3)) ∣ 𝜑} ∈ (Dioph‘3)) → {𝑏 ∈ (ℕ0 ↑m (1...𝑁)) ∣ 𝜓} ∈ (Dioph‘𝑁)) | ||
Theorem | fphpd 42158* | Pigeonhole principle expressed with implicit substitution. If the range is smaller than the domain, two inputs must be mapped to the same output. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ (𝜑 → 𝐵 ≺ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ 𝐶 = 𝐷)) | ||
Theorem | fphpdo 42159* | Pigeonhole principle for sets of real numbers with implicit output reordering. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐵 ≺ 𝐴) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ (𝑧 = 𝑥 → 𝐶 = 𝐷) & ⊢ (𝑧 = 𝑦 → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 < 𝑦 ∧ 𝐷 = 𝐸)) | ||
Theorem | ctbnfien 42160 | An infinite subset of a countable set is countable, without using choice. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
⊢ (((𝑋 ≈ ω ∧ 𝑌 ≈ ω) ∧ (𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin)) → 𝐴 ≈ 𝑌) | ||
Theorem | fiphp3d 42161* | Infinite pigeonhole principle for partitioning an infinite set between finitely many buckets. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
⊢ (𝜑 → 𝐴 ≈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ 𝐵 {𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦} ≈ ℕ) | ||
Theorem | rencldnfilem 42162* | Lemma for rencldnfi 42163. (Contributed by Stefan O'Rear, 18-Oct-2014.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵 ∈ 𝐴)) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐴 (abs‘(𝑦 − 𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin) | ||
Theorem | rencldnfi 42163* | A set of real numbers which comes arbitrarily close to some target yet excludes it is infinite. The work is done in rencldnfilem 42162 using infima; this theorem removes the requirement that A be nonempty. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ 𝐴) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐴 (abs‘(𝑦 − 𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin) | ||
Theorem | irrapxlem1 42164* | Lemma for irrapx1 42170. Divides the unit interval into 𝐵 half-open sections and using the pigeonhole principle fphpdo 42159 finds two multiples of 𝐴 in the same section mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))) | ||
Theorem | irrapxlem2 42165* | Lemma for irrapx1 42170. Two multiples in the same bucket means they are very close mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))) | ||
Theorem | irrapxlem3 42166* | Lemma for irrapx1 42170. By subtraction, there is a multiple very close to an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ (1...𝐵)∃𝑦 ∈ ℕ0 (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / 𝐵)) | ||
Theorem | irrapxlem4 42167* | Lemma for irrapx1 42170. Eliminate ranges, use positivity of the input to force positivity of the output by increasing 𝐵 as needed. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ (abs‘((𝐴 · 𝑥) − 𝑦)) < (1 / if(𝑥 ≤ 𝐵, 𝐵, 𝑥))) | ||
Theorem | irrapxlem5 42168* | Lemma for irrapx1 42170. Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (0 < 𝑥 ∧ (abs‘(𝑥 − 𝐴)) < 𝐵 ∧ (abs‘(𝑥 − 𝐴)) < ((denom‘𝑥)↑-2))) | ||
Theorem | irrapxlem6 42169* | Lemma for irrapx1 42170. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) | ||
Theorem | irrapx1 42170* | Dirichlet's approximation theorem. Every positive irrational number has infinitely many rational approximations which are closer than the inverse squares of their reduced denominators. Lemma 61 in [vandenDries] p. 42. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
⊢ (𝐴 ∈ (ℝ+ ∖ ℚ) → {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ≈ ℕ) | ||
Theorem | pellexlem1 42171 | Lemma for pellex 42177. Arithmetical core of pellexlem3, norm lower bound. This begins Dirichlet's proof of the Pell equation solution existence; the proof here follows theorem 62 of [vandenDries] p. 43. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ¬ (√‘𝐷) ∈ ℚ) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ≠ 0) | ||
Theorem | pellexlem2 42172 | Lemma for pellex 42177. Arithmetical core of pellexlem3, norm upper bound. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 · (√‘𝐷)))) | ||
Theorem | pellexlem3 42173* | Lemma for pellex 42177. To each good rational approximation of (√‘𝐷), there exists a near-solution. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {𝑥 ∈ ℚ ∣ (0 < 𝑥 ∧ (abs‘(𝑥 − (√‘𝐷))) < ((denom‘𝑥)↑-2))} ≼ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))}) | ||
Theorem | pellexlem4 42174* | Lemma for pellex 42177. Invoking irrapx1 42170, we have infinitely many near-solutions. (Contributed by Stefan O'Rear, 14-Sep-2014.) |
⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (((𝑦↑2) − (𝐷 · (𝑧↑2))) ≠ 0 ∧ (abs‘((𝑦↑2) − (𝐷 · (𝑧↑2)))) < (1 + (2 · (√‘𝐷)))))} ≈ ℕ) | ||
Theorem | pellexlem5 42175* | Lemma for pellex 42177. Invoking fiphp3d 42161, we have infinitely many near-solutions for some specific norm. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℤ (𝑥 ≠ 0 ∧ {〈𝑦, 𝑧〉 ∣ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ ((𝑦↑2) − (𝐷 · (𝑧↑2))) = 𝑥)} ≈ ℕ)) | ||
Theorem | pellexlem6 42176* | Lemma for pellex 42177. Doing a field division between near solutions get us to norm 1, and the modularity constraint ensures we still have an integer. Returning NN guarantees that we are not returning the trivial solution (1,0). We are not explicitly defining the Pell-field, Pell-ring, and Pell-norm explicitly because after this construction is done we will never use them. This is mostly basic algebraic number theory and could be simplified if a generic framework for that were in place. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → ¬ (√‘𝐷) ∈ ℚ) & ⊢ (𝜑 → 𝐸 ∈ ℕ) & ⊢ (𝜑 → 𝐹 ∈ ℕ) & ⊢ (𝜑 → ¬ (𝐴 = 𝐸 ∧ 𝐵 = 𝐹)) & ⊢ (𝜑 → 𝐶 ≠ 0) & ⊢ (𝜑 → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 𝐶) & ⊢ (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶) & ⊢ (𝜑 → (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶))) & ⊢ (𝜑 → (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶))) ⇒ ⊢ (𝜑 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1) | ||
Theorem | pellex 42177* | Every Pell equation has a nontrivial solution. Theorem 62 in [vandenDries] p. 43. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
⊢ ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ ((𝑥↑2) − (𝐷 · (𝑦↑2))) = 1) | ||
Syntax | csquarenn 42178 | Extend class notation to include the set of square positive integers. |
class ◻NN | ||
Syntax | cpell1qr 42179 | Extend class notation to include the class of quadrant-1 Pell solutions. |
class Pell1QR | ||
Syntax | cpell1234qr 42180 | Extend class notation to include the class of any-quadrant Pell solutions. |
class Pell1234QR | ||
Syntax | cpell14qr 42181 | Extend class notation to include the class of positive Pell solutions. |
class Pell14QR | ||
Syntax | cpellfund 42182 | Extend class notation to include the Pell-equation fundamental solution function. |
class PellFund | ||
Definition | df-squarenn 42183 | Define the set of square positive integers. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ◻NN = {𝑥 ∈ ℕ ∣ (√‘𝑥) ∈ ℚ} | ||
Definition | df-pell1qr 42184* | Define the solutions of a Pell equation in the first quadrant. To avoid pair pain, we represent this via the canonical embedding into the reals. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ Pell1QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) | ||
Definition | df-pell14qr 42185* | Define the positive solutions of a Pell equation. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ Pell14QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) | ||
Definition | df-pell1234qr 42186* | Define the general solutions of a Pell equation. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ Pell1234QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) | ||
Definition | df-pellfund 42187* | A function mapping Pell discriminants to the corresponding fundamental solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) (Revised by AV, 17-Sep-2020.) |
⊢ PellFund = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ inf({𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧}, ℝ, < )) | ||
Theorem | pell1qrval 42188* | Value of the set of first-quadrant Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | ||
Theorem | elpell1qr 42189* | Membership in a first-quadrant Pell solution set. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) | ||
Theorem | pell14qrval 42190* | Value of the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | ||
Theorem | elpell14qr 42191* | Membership in the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) | ||
Theorem | pell1234qrval 42192* | Value of the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1234QR‘𝐷) = {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | ||
Theorem | elpell1234qr 42193* | Membership in the set of general Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1234QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) | ||
Theorem | pell1234qrre 42194 | General Pell solutions are (coded as) real numbers. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ) | ||
Theorem | pell1234qrne0 42195 | No solution to a Pell equation is zero. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ≠ 0) | ||
Theorem | pell1234qrreccl 42196 | General solutions of the Pell equation are closed under reciprocals. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (1 / 𝐴) ∈ (Pell1234QR‘𝐷)) | ||
Theorem | pell1234qrmulcl 42197 | General solutions of the Pell equation are closed under multiplication. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷) ∧ 𝐵 ∈ (Pell1234QR‘𝐷)) → (𝐴 · 𝐵) ∈ (Pell1234QR‘𝐷)) | ||
Theorem | pell14qrss1234 42198 | A positive Pell solution is a general Pell solution. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷)) | ||
Theorem | pell14qrre 42199 | A positive Pell solution is a real number. (Contributed by Stefan O'Rear, 18-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ ℝ) | ||
Theorem | pell14qrne0 42200 | A positive Pell solution is a nonzero number. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
⊢ ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ≠ 0) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |