MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumbnd Structured version   Visualization version   GIF version

Theorem pntrsumbnd 27493
Description: A bound on a sum over 𝑅. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrsumbnd 𝑐 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Distinct variable groups:   𝑚,𝑎,𝑛   𝑚,𝑐,𝑛,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrsumbnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 4002 . . . 4 (⊤ → ℝ ⊆ ℝ)
2 1red 11240 . . . 4 (⊤ → 1 ∈ ℝ)
3 fzfid 13965 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℝ) → (1...(⌊‘𝑚)) ∈ Fin)
4 elfznn 13557 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝑚)) → 𝑛 ∈ ℕ)
54adantl 481 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ 𝑛 ∈ (1...(⌊‘𝑚))) → 𝑛 ∈ ℕ)
6 nnrp 13012 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7 pntrval.r . . . . . . . . . . 11 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
87pntrf 27490 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
98ffvelcdmi 7088 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
106, 9syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑅𝑛) ∈ ℝ)
11 peano2nn 12249 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
12 nnmulcl 12261 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
1311, 12mpdan 686 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 · (𝑛 + 1)) ∈ ℕ)
1410, 13nndivred 12291 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
1514recnd 11267 . . . . . 6 (𝑛 ∈ ℕ → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
165, 15syl 17 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ 𝑛 ∈ (1...(⌊‘𝑚))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
173, 16fsumcl 15706 . . . 4 ((⊤ ∧ 𝑚 ∈ ℝ) → Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
187pntrsumo1 27492 . . . . 5 (𝑚 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ 𝑂(1)
1918a1i 11 . . . 4 (⊤ → (𝑚 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ 𝑂(1))
20 fzfid 13965 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
21 elfznn 13557 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2221adantl 481 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2322, 15syl 17 . . . . . 6 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
2423abscld 15410 . . . . 5 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
2520, 24fsumrecl 15707 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
2617adantr 480 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
2726abscld 15410 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
28 fzfid 13965 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (1...(⌊‘𝑚)) ∈ Fin)
2916adantlr 714 . . . . . . 7 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑚))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
3029abscld 15410 . . . . . 6 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑚))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
3128, 30fsumrecl 15707 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑚))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
3225ad2ant2r 746 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
3328, 29fsumabs 15774 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑚))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
34 fzfid 13965 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
3521adantl 481 . . . . . . . 8 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
3635, 15syl 17 . . . . . . 7 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
3736abscld 15410 . . . . . 6 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
3836absge0d 15418 . . . . . 6 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
39 simplr 768 . . . . . . . 8 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → 𝑚 ∈ ℝ)
40 simprll 778 . . . . . . . 8 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → 𝑥 ∈ ℝ)
41 simprr 772 . . . . . . . . 9 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → 𝑚 < 𝑥)
4239, 40, 41ltled 11387 . . . . . . . 8 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → 𝑚𝑥)
43 flword2 13805 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑚𝑥) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑚)))
4439, 40, 42, 43syl3anc 1369 . . . . . . 7 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑚)))
45 fzss2 13568 . . . . . . 7 ((⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑚)) → (1...(⌊‘𝑚)) ⊆ (1...(⌊‘𝑥)))
4644, 45syl 17 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (1...(⌊‘𝑚)) ⊆ (1...(⌊‘𝑥)))
4734, 37, 38, 46fsumless 15769 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑚))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
4827, 31, 32, 33, 47letrd 11396 . . . 4 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
491, 2, 17, 19, 25, 48o1bddrp 15513 . . 3 (⊤ → ∃𝑐 ∈ ℝ+𝑚 ∈ ℝ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
5049mptru 1541 . 2 𝑐 ∈ ℝ+𝑚 ∈ ℝ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
51 zre 12587 . . . . . 6 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
5251imim1i 63 . . . . 5 ((𝑚 ∈ ℝ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐) → (𝑚 ∈ ℤ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐))
53 flid 13800 . . . . . . . . 9 (𝑚 ∈ ℤ → (⌊‘𝑚) = 𝑚)
5453oveq2d 7431 . . . . . . . 8 (𝑚 ∈ ℤ → (1...(⌊‘𝑚)) = (1...𝑚))
5554sumeq1d 15674 . . . . . . 7 (𝑚 ∈ ℤ → Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5655fveq2d 6896 . . . . . 6 (𝑚 ∈ ℤ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
5756breq1d 5153 . . . . 5 (𝑚 ∈ ℤ → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 ↔ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐))
5852, 57mpbidi 240 . . . 4 ((𝑚 ∈ ℝ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐) → (𝑚 ∈ ℤ → (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐))
5958ralimi2 3074 . . 3 (∀𝑚 ∈ ℝ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
6059reximi 3080 . 2 (∃𝑐 ∈ ℝ+𝑚 ∈ ℝ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 → ∃𝑐 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
6150, 60ax-mp 5 1 𝑐 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wtru 1535  wcel 2099  wral 3057  wrex 3066  wss 3945   class class class wbr 5143  cmpt 5226  cfv 6543  (class class class)co 7415  cc 11131  cr 11132  1c1 11134   + caddc 11136   · cmul 11138   < clt 11273  cle 11274  cmin 11469   / cdiv 11896  cn 12237  cz 12583  cuz 12847  +crp 13001  ...cfz 13511  cfl 13782  abscabs 15208  𝑂(1)co1 15457  Σcsu 15659  ψcchp 27019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211  ax-addf 11212
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-om 7866  df-1st 7988  df-2nd 7989  df-supp 8161  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-2o 8482  df-oadd 8485  df-er 8719  df-map 8841  df-pm 8842  df-ixp 8911  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fsupp 9381  df-fi 9429  df-sup 9460  df-inf 9461  df-oi 9528  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-xnn0 12570  df-z 12584  df-dec 12703  df-uz 12848  df-q 12958  df-rp 13002  df-xneg 13119  df-xadd 13120  df-xmul 13121  df-ioo 13355  df-ioc 13356  df-ico 13357  df-icc 13358  df-fz 13512  df-fzo 13655  df-fl 13784  df-mod 13862  df-seq 13994  df-exp 14054  df-fac 14260  df-bc 14289  df-hash 14317  df-shft 15041  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-limsup 15442  df-clim 15459  df-rlim 15460  df-o1 15461  df-lo1 15462  df-sum 15660  df-ef 16038  df-e 16039  df-sin 16040  df-cos 16041  df-tan 16042  df-pi 16043  df-dvds 16226  df-gcd 16464  df-prm 16637  df-pc 16800  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17398  df-topn 17399  df-0g 17417  df-gsum 17418  df-topgen 17419  df-pt 17420  df-prds 17423  df-xrs 17478  df-qtop 17483  df-imas 17484  df-xps 17486  df-mre 17560  df-mrc 17561  df-acs 17563  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-submnd 18735  df-mulg 19018  df-cntz 19262  df-cmn 19731  df-psmet 21265  df-xmet 21266  df-met 21267  df-bl 21268  df-mopn 21269  df-fbas 21270  df-fg 21271  df-cnfld 21274  df-top 22790  df-topon 22807  df-topsp 22829  df-bases 22843  df-cld 22917  df-ntr 22918  df-cls 22919  df-nei 22996  df-lp 23034  df-perf 23035  df-cn 23125  df-cnp 23126  df-haus 23213  df-cmp 23285  df-tx 23460  df-hmeo 23653  df-fil 23744  df-fm 23836  df-flim 23837  df-flf 23838  df-xms 24220  df-ms 24221  df-tms 24222  df-cncf 24792  df-limc 25789  df-dv 25790  df-ulm 26307  df-log 26484  df-cxp 26485  df-atan 26793  df-em 26919  df-cht 27023  df-vma 27024  df-chp 27025  df-ppi 27026
This theorem is referenced by:  pntrsumbnd2  27494
  Copyright terms: Public domain W3C validator