![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovprc1 | Structured version Visualization version GIF version |
Description: The value of an operation when the first argument is a proper class. (Contributed by NM, 16-Jun-2004.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovprc1 | ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
3 | 2 | ovprc 7452 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ∅c0 4318 dom cdm 5672 Rel wrel 5677 (class class class)co 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-dm 5682 df-iota 6494 df-fv 6550 df-ov 7417 |
This theorem is referenced by: mapssfset 8863 mapdom2 9166 relexpsucrd 15006 relexpsucld 15007 relexpreld 15013 relexpdmd 15017 relexprnd 15021 relexpfldd 15023 relexpaddd 15027 dfrtrclrec2 15031 relexpindlem 15036 oveqprc 17154 setsnidOLD 17172 ressbasOLD 17209 resslemOLD 17216 ressinbas 17219 ressress 17222 oduval 18273 oduleval 18274 gsum0 18637 efmndbas 18816 oppgval 19291 oppgplusfval 19292 mgpval 20070 opprval 20267 srasca 21062 srascaOLD 21063 rlmsca2 21085 dsmmval 21661 dsmmfi 21665 resspsrbas 21910 mpfrcl 22024 psrbaspropd 22146 mplbaspropd 22148 evl1fval1 22243 qtopres 23595 fgabs 23776 tnglemOLD 24543 tngds 24557 tngdsOLD 24558 tcphval 25139 erlval 32966 fracval 32984 resvsca 33035 resvlemOLD 33037 mapco2g 42106 mzpmfp 42139 mendbas 42580 naryfvalixp 47674 1aryenef 47690 2aryenef 47701 |
Copyright terms: Public domain | W3C validator |