![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgplusfval | Structured version Visualization version GIF version |
Description: Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
Ref | Expression |
---|---|
oppgval.2 | ⊢ + = (+g‘𝑅) |
oppgval.3 | ⊢ 𝑂 = (oppg‘𝑅) |
oppgplusfval.4 | ⊢ ✚ = (+g‘𝑂) |
Ref | Expression |
---|---|
oppgplusfval | ⊢ ✚ = tpos + |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgplusfval.4 | . 2 ⊢ ✚ = (+g‘𝑂) | |
2 | oppgval.2 | . . . . . 6 ⊢ + = (+g‘𝑅) | |
3 | oppgval.3 | . . . . . 6 ⊢ 𝑂 = (oppg‘𝑅) | |
4 | 2, 3 | oppgval 19291 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) |
5 | 4 | fveq2i 6894 | . . . 4 ⊢ (+g‘𝑂) = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉)) |
6 | 2 | fvexi 6905 | . . . . . 6 ⊢ + ∈ V |
7 | 6 | tposex 8259 | . . . . 5 ⊢ tpos + ∈ V |
8 | plusgid 17253 | . . . . . 6 ⊢ +g = Slot (+g‘ndx) | |
9 | 8 | setsid 17170 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos + ∈ V) → tpos + = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉))) |
10 | 7, 9 | mpan2 690 | . . . 4 ⊢ (𝑅 ∈ V → tpos + = (+g‘(𝑅 sSet 〈(+g‘ndx), tpos + 〉))) |
11 | 5, 10 | eqtr4id 2786 | . . 3 ⊢ (𝑅 ∈ V → (+g‘𝑂) = tpos + ) |
12 | tpos0 8255 | . . . . 5 ⊢ tpos ∅ = ∅ | |
13 | 8 | str0 17151 | . . . . 5 ⊢ ∅ = (+g‘∅) |
14 | 12, 13 | eqtr2i 2756 | . . . 4 ⊢ (+g‘∅) = tpos ∅ |
15 | reldmsets 17127 | . . . . . . 7 ⊢ Rel dom sSet | |
16 | 15 | ovprc1 7453 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (𝑅 sSet 〈(+g‘ndx), tpos + 〉) = ∅) |
17 | 4, 16 | eqtrid 2779 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
18 | 17 | fveq2d 6895 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑂) = (+g‘∅)) |
19 | fvprc 6883 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑅) = ∅) | |
20 | 2, 19 | eqtrid 2779 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → + = ∅) |
21 | 20 | tposeqd 8228 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos + = tpos ∅) |
22 | 14, 18, 21 | 3eqtr4a 2793 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑂) = tpos + ) |
23 | 11, 22 | pm2.61i 182 | . 2 ⊢ (+g‘𝑂) = tpos + |
24 | 1, 23 | eqtri 2755 | 1 ⊢ ✚ = tpos + |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ∅c0 4318 〈cop 4630 ‘cfv 6542 (class class class)co 7414 tpos ctpos 8224 sSet csts 17125 ndxcnx 17155 +gcplusg 17226 oppgcoppg 19289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-1cn 11190 ax-addcl 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12237 df-2 12299 df-sets 17126 df-slot 17144 df-ndx 17156 df-plusg 17239 df-oppg 19290 |
This theorem is referenced by: oppgplus 19293 |
Copyright terms: Public domain | W3C validator |