MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovprc2 Structured version   Visualization version   GIF version

Theorem ovprc2 7455
Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovprc2 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ovprc2
StepHypRef Expression
1 simpr 484 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
2 ovprc1.1 . . 3 Rel dom 𝐹
32ovprc 7453 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
41, 3nsyl5 159 1 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3470  c0 4319  dom cdm 5673  Rel wrel 5678  (class class class)co 7415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-xp 5679  df-rel 5680  df-dm 5683  df-iota 6495  df-fv 6551  df-ov 7418
This theorem is referenced by:  ressbasssg  17211  ressbasssOLD  17214  ress0  17218  wunress  17225  wunressOLD  17226  0rest  17405  firest  17408  subcmn  19786  dprdval0prc  19953  zrhval  21427  dsmmval2  21664  psrbas  21872  psr1val  22099  vr1val  22105  ply1ascl  22171  evl1fval  22241  restbas  23056  resstopn  23084  deg1fval  26010  wwlksn  29642  submomnd  32785  suborng  33025  bj-restsnid  36561  1aryenef  47709  2aryenef  47720
  Copyright terms: Public domain W3C validator