MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplbaspropd Structured version   Visualization version   GIF version

Theorem mplbaspropd 22154
Description: Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Jul-2019.)
Hypotheses
Ref Expression
psrplusgpropd.b1 (𝜑𝐵 = (Base‘𝑅))
psrplusgpropd.b2 (𝜑𝐵 = (Base‘𝑆))
psrplusgpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
mplbaspropd (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
Distinct variable groups:   𝜑,𝑦,𝑥   𝑥,𝐵,𝑦   𝑦,𝑅,𝑥   𝑦,𝑆,𝑥
Allowed substitution hints:   𝐼(𝑥,𝑦)

Proof of Theorem mplbaspropd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 psrplusgpropd.b1 . . . . . . 7 (𝜑𝐵 = (Base‘𝑅))
2 psrplusgpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝑆))
31, 2eqtr3d 2770 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘𝑆))
43psrbaspropd 22152 . . . . 5 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
54adantr 480 . . . 4 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
6 psrplusgpropd.p . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
71, 2, 6grpidpropd 18621 . . . . . 6 (𝜑 → (0g𝑅) = (0g𝑆))
87breq2d 5160 . . . . 5 (𝜑 → (𝑎 finSupp (0g𝑅) ↔ 𝑎 finSupp (0g𝑆)))
98adantr 480 . . . 4 ((𝜑𝐼 ∈ V) → (𝑎 finSupp (0g𝑅) ↔ 𝑎 finSupp (0g𝑆)))
105, 9rabeqbidv 3446 . . 3 ((𝜑𝐼 ∈ V) → {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g𝑅)} = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g𝑆)})
11 eqid 2728 . . . 4 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
12 eqid 2728 . . . 4 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
13 eqid 2728 . . . 4 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
14 eqid 2728 . . . 4 (0g𝑅) = (0g𝑅)
15 eqid 2728 . . . 4 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
1611, 12, 13, 14, 15mplbas 21931 . . 3 (Base‘(𝐼 mPoly 𝑅)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑎 finSupp (0g𝑅)}
17 eqid 2728 . . . 4 (𝐼 mPoly 𝑆) = (𝐼 mPoly 𝑆)
18 eqid 2728 . . . 4 (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆)
19 eqid 2728 . . . 4 (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆))
20 eqid 2728 . . . 4 (0g𝑆) = (0g𝑆)
21 eqid 2728 . . . 4 (Base‘(𝐼 mPoly 𝑆)) = (Base‘(𝐼 mPoly 𝑆))
2217, 18, 19, 20, 21mplbas 21931 . . 3 (Base‘(𝐼 mPoly 𝑆)) = {𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)) ∣ 𝑎 finSupp (0g𝑆)}
2310, 16, 223eqtr4g 2793 . 2 ((𝜑𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
24 reldmmpl 21929 . . . . . 6 Rel dom mPoly
2524ovprc1 7459 . . . . 5 𝐼 ∈ V → (𝐼 mPoly 𝑅) = ∅)
2624ovprc1 7459 . . . . 5 𝐼 ∈ V → (𝐼 mPoly 𝑆) = ∅)
2725, 26eqtr4d 2771 . . . 4 𝐼 ∈ V → (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑆))
2827fveq2d 6901 . . 3 𝐼 ∈ V → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
2928adantl 481 . 2 ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
3023, 29pm2.61dan 812 1 (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  {crab 3429  Vcvv 3471  c0 4323   class class class wbr 5148  cfv 6548  (class class class)co 7420   finSupp cfsupp 9385  Basecbs 17179  +gcplusg 17232  0gc0g 17420   mPwSer cmps 21836   mPoly cmpl 21838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fsupp 9386  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-sca 17248  df-vsca 17249  df-tset 17251  df-0g 17422  df-psr 21841  df-mpl 21843
This theorem is referenced by:  ply1baspropd  22160  mdegpropd  26019
  Copyright terms: Public domain W3C validator