![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmmpl | Structured version Visualization version GIF version |
Description: The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
reldmmpl | ⊢ Rel dom mPoly |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpl 21849 | . 2 ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑠⦌(𝑠 ↾s {𝑓 ∈ (Base‘𝑠) ∣ 𝑓 finSupp (0g‘𝑟)})) | |
2 | 1 | reldmmpo 7559 | 1 ⊢ Rel dom mPoly |
Colors of variables: wff setvar class |
Syntax hints: {crab 3428 Vcvv 3471 ⦋csb 3892 class class class wbr 5150 dom cdm 5680 Rel wrel 5685 ‘cfv 6551 (class class class)co 7424 finSupp cfsupp 9391 Basecbs 17185 ↾s cress 17214 0gc0g 17426 mPwSer cmps 21842 mPoly cmpl 21844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5151 df-opab 5213 df-xp 5686 df-rel 5687 df-dm 5690 df-oprab 7428 df-mpo 7429 df-mpl 21849 |
This theorem is referenced by: mplval 21936 mplrcl 21941 mplbaspropd 22160 ply1ascl 22182 mdegfval 26016 mdegcl 26023 |
Copyright terms: Public domain | W3C validator |