![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resspsrbas | Structured version Visualization version GIF version |
Description: A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
resspsr.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
resspsr.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
resspsr.u | ⊢ 𝑈 = (𝐼 mPwSer 𝐻) |
resspsr.b | ⊢ 𝐵 = (Base‘𝑈) |
resspsr.p | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
resspsr.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
Ref | Expression |
---|---|
resspsrbas | ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6905 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
2 | resspsr.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
3 | resspsr.h | . . . . . . . . 9 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
4 | 3 | subrgbas 20514 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻)) |
5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 = (Base‘𝐻)) |
6 | eqid 2728 | . . . . . . . . 9 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | 6 | subrgss 20505 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅)) |
8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ⊆ (Base‘𝑅)) |
9 | 5, 8 | eqsstrrd 4018 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅)) |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘𝐻) ⊆ (Base‘𝑅)) |
11 | mapss 8902 | . . . . 5 ⊢ (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) | |
12 | 1, 10, 11 | sylancr 586 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
13 | resspsr.u | . . . . 5 ⊢ 𝑈 = (𝐼 mPwSer 𝐻) | |
14 | eqid 2728 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
15 | eqid 2728 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
16 | resspsr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
17 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐼 ∈ V) | |
18 | 13, 14, 15, 16, 17 | psrbas 21872 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
19 | resspsr.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
20 | eqid 2728 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
21 | 19, 6, 15, 20, 17 | psrbas 21872 | . . . 4 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
22 | 12, 18, 21 | 3sstr4d 4026 | . . 3 ⊢ ((𝜑 ∧ 𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆)) |
23 | reldmpsr 21841 | . . . . . . . . 9 ⊢ Rel dom mPwSer | |
24 | 23 | ovprc1 7454 | . . . . . . . 8 ⊢ (¬ 𝐼 ∈ V → (𝐼 mPwSer 𝐻) = ∅) |
25 | 13, 24 | eqtrid 2780 | . . . . . . 7 ⊢ (¬ 𝐼 ∈ V → 𝑈 = ∅) |
26 | 25 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝑈 = ∅) |
27 | 26 | fveq2d 6896 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → (Base‘𝑈) = (Base‘∅)) |
28 | base0 17179 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
29 | 27, 16, 28 | 3eqtr4g 2793 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 = ∅) |
30 | 0ss 4393 | . . . 4 ⊢ ∅ ⊆ (Base‘𝑆) | |
31 | 29, 30 | eqsstrdi 4033 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐼 ∈ V) → 𝐵 ⊆ (Base‘𝑆)) |
32 | 22, 31 | pm2.61dan 812 | . 2 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑆)) |
33 | resspsr.p | . . 3 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
34 | 33, 20 | ressbas2 17212 | . 2 ⊢ (𝐵 ⊆ (Base‘𝑆) → 𝐵 = (Base‘𝑃)) |
35 | 32, 34 | syl 17 | 1 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3428 Vcvv 3470 ⊆ wss 3945 ∅c0 4319 ◡ccnv 5672 “ cima 5676 ‘cfv 6543 (class class class)co 7415 ↑m cmap 8839 Fincfn 8958 ℕcn 12237 ℕ0cn0 12497 Basecbs 17174 ↾s cress 17203 SubRingcsubrg 20500 mPwSer cmps 21831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-tset 17246 df-subg 19072 df-ring 20169 df-subrg 20502 df-psr 21836 |
This theorem is referenced by: resspsrvsca 21914 subrgpsr 21915 |
Copyright terms: Public domain | W3C validator |