![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version |
Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6725 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
2 | fcof 6746 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
3 | 1, 2 | sylan2 592 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
4 | fimacnv 6745 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
5 | 4 | eqcomd 2734 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
7 | 6 | feq2d 6708 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ◡ccnv 5677 “ cima 5681 ∘ ccom 5682 Fun wfun 6542 ⟶wf 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-fun 6550 df-fn 6551 df-f 6552 |
This theorem is referenced by: fcod 6749 fco2 6750 f1coOLD 6806 mapen 9166 fsuppco2 9427 mapfienlem1 9429 unxpwdom2 9612 wemapwe 9721 cfcoflem 10296 isf34lem7 10403 isf34lem6 10404 inar1 10799 addnqf 10972 mulnqf 10973 axdc4uzlem 13981 seqf1olem2 14040 wrdco 14815 lenco 14816 lo1o1 15509 o1co 15563 caucvgrlem2 15654 fsumcl2lem 15710 fsumadd 15719 fsummulc2 15763 fsumrelem 15786 supcvg 15835 fprodcl2lem 15927 fprodmul 15937 fproddiv 15938 fprodn0 15956 algcvg 16547 cofucl 17874 setccatid 18073 estrccatid 18122 funcestrcsetclem9 18139 funcsetcestrclem9 18154 yonedalem3b 18271 mgmhmco 18674 mhmco 18775 pwsco1mhm 18784 pwsco2mhm 18785 gsumwmhm 18797 efmndcl 18834 f1omvdconj 19401 pmtrfinv 19416 symgtrinv 19427 psgnunilem1 19448 gsumval3lem1 19860 gsumval3 19862 gsumzcl2 19865 gsumzf1o 19867 gsumzaddlem 19876 gsumzmhm 19892 gsumzoppg 19899 gsumzinv 19900 gsumsub 19903 dprdf1o 19989 ablfaclem2 20043 cnfldds 21291 cnflddsOLD 21304 dsmmbas2 21671 f1lindf 21756 lindfmm 21761 psrass1lemOLD 21874 psrnegcl 21897 coe1f2 22128 cpmadumatpolylem1 22796 cnco 23183 cnpco 23184 lmcnp 23221 cnmpt11 23580 cnmpt21 23588 qtopcn 23631 fmco 23878 flfcnp 23921 tsmsf1o 24062 tsmsmhm 24063 tsmssub 24066 imasdsf1olem 24292 nrmmetd 24496 isngp2 24519 isngp3 24520 tngngp2 24582 cnmet 24701 cnfldms 24705 cncfco 24840 cnfldcusp 25298 ovolfioo 25409 ovolficc 25410 ovolfsf 25413 ovollb 25421 ovolctb 25432 ovolicc2lem4 25462 ovolicc2 25464 volsup 25498 uniioovol 25521 uniioombllem3a 25526 uniioombllem3 25527 uniioombllem4 25528 uniioombllem5 25529 uniioombl 25531 mbfdm 25568 ismbfcn 25571 mbfres 25586 mbfimaopnlem 25597 cncombf 25600 limccnp 25833 dvcobrOLD 25891 dvcof 25893 dvcjbr 25894 dvcj 25895 dvmptco 25917 dvlip2 25941 itgsubstlem 25996 coecj 26226 pserulm 26371 jensenlem2 26933 jensen 26934 amgmlem 26935 gamf 26988 dchrinv 27207 motcgrg 28361 vsfval 30456 imsdf 30512 lnocoi 30580 hocofi 31589 homco1 31624 homco2 31800 hmopco 31846 kbass2 31940 kbass5 31943 opsqrlem1 31963 opsqrlem6 31968 pjinvari 32014 fmptco1f1o 32431 fcobij 32517 fcobijfs 32518 mbfmco 33884 dstfrvclim1 34097 reprpmtf1o 34258 mrsubco 35131 mclsppslem 35193 circum 35278 mblfinlem2 37131 mbfresfi 37139 ftc1anclem5 37170 ghomco 37364 rngohomco 37447 tendococl 40245 mapco2g 42134 diophrw 42179 hausgraph 42633 sblpnf 43747 fcoss 44583 limccog 45008 mbfres2cn 45346 volioof 45375 volioofmpt 45382 voliooicof 45384 stoweidlem31 45419 stoweidlem59 45447 subsaliuncllem 45745 sge0resrnlem 45791 hoicvr 45936 ovolval2lem 46031 ovolval2 46032 ovolval3 46035 ovolval4lem1 46037 gricushgr 47183 amgmwlem 48235 |
Copyright terms: Public domain | W3C validator |