![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldcusp | Structured version Visualization version GIF version |
Description: The field of complex numbers is a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
Ref | Expression |
---|---|
cnfldcusp | ⊢ ℂfld ∈ CUnifSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11230 | . . 3 ⊢ 0 ∈ ℂ | |
2 | 1 | ne0ii 4333 | . 2 ⊢ ℂ ≠ ∅ |
3 | cncms 25276 | . 2 ⊢ ℂfld ∈ CMetSp | |
4 | eqid 2727 | . . 3 ⊢ (UnifSt‘ℂfld) = (UnifSt‘ℂfld) | |
5 | 4 | cnflduss 25277 | . 2 ⊢ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − )) |
6 | cnfldbas 21276 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
7 | absf 15310 | . . . . . 6 ⊢ abs:ℂ⟶ℝ | |
8 | subf 11486 | . . . . . 6 ⊢ − :(ℂ × ℂ)⟶ℂ | |
9 | fco 6741 | . . . . . 6 ⊢ ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
10 | 7, 8, 9 | mp2an 691 | . . . . 5 ⊢ (abs ∘ − ):(ℂ × ℂ)⟶ℝ |
11 | ffn 6716 | . . . . 5 ⊢ ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ)) | |
12 | fnresdm 6668 | . . . . 5 ⊢ ((abs ∘ − ) Fn (ℂ × ℂ) → ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − )) | |
13 | 10, 11, 12 | mp2b 10 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = (abs ∘ − ) |
14 | cnfldds 21284 | . . . . 5 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
15 | 14 | reseq1i 5975 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℂ × ℂ)) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
16 | 13, 15 | eqtr3i 2757 | . . 3 ⊢ (abs ∘ − ) = ((dist‘ℂfld) ↾ (ℂ × ℂ)) |
17 | 6, 16, 4 | cmetcusp1 25274 | . 2 ⊢ ((ℂ ≠ ∅ ∧ ℂfld ∈ CMetSp ∧ (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))) → ℂfld ∈ CUnifSp) |
18 | 2, 3, 5, 17 | mp3an 1458 | 1 ⊢ ℂfld ∈ CUnifSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∅c0 4318 × cxp 5670 ↾ cres 5674 ∘ ccom 5676 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 ℂcc 11130 ℝcr 11131 0cc0 11132 − cmin 11468 abscabs 15207 distcds 17235 metUnifcmetu 21263 ℂfldccnfld 21272 UnifStcuss 24151 CUnifSpccusp 24195 CMetSpccms 25253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-ioo 13354 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17397 df-topn 17398 df-0g 17416 df-gsum 17417 df-topgen 17418 df-pt 17419 df-prds 17422 df-xrs 17477 df-qtop 17482 df-imas 17483 df-xps 17485 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-mulg 19017 df-cntz 19261 df-cmn 19730 df-psmet 21264 df-xmet 21265 df-met 21266 df-bl 21267 df-mopn 21268 df-fbas 21269 df-fg 21270 df-metu 21271 df-cnfld 21273 df-top 22789 df-topon 22806 df-topsp 22828 df-bases 22842 df-cld 22916 df-ntr 22917 df-cls 22918 df-nei 22995 df-cn 23124 df-cnp 23125 df-haus 23212 df-cmp 23284 df-tx 23459 df-hmeo 23652 df-fil 23743 df-flim 23836 df-fcls 23838 df-ust 24098 df-utop 24129 df-uss 24154 df-usp 24155 df-cfilu 24185 df-cusp 24196 df-xms 24219 df-ms 24220 df-tms 24221 df-cncf 24791 df-cfil 25176 df-cmet 25178 df-cms 25256 |
This theorem is referenced by: cnrrext 33601 |
Copyright terms: Public domain | W3C validator |