MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coecj Structured version   Visualization version   GIF version

Theorem coecj 26207
Description: Double conjugation of a polynomial causes the coefficients to be conjugated. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.1 𝑁 = (deg‘𝐹)
plycj.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
coecj.3 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
coecj (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴))

Proof of Theorem coecj
Dummy variables 𝑥 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.1 . . 3 𝑁 = (deg‘𝐹)
2 plycj.2 . . 3 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
3 cjcl 15079 . . . 4 (𝑥 ∈ ℂ → (∗‘𝑥) ∈ ℂ)
43adantl 481 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑥 ∈ ℂ) → (∗‘𝑥) ∈ ℂ)
5 plyssc 26128 . . . 4 (Poly‘𝑆) ⊆ (Poly‘ℂ)
65sseli 3975 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
71, 2, 4, 6plycj 26206 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
8 dgrcl 26161 . . 3 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
91, 8eqeltrid 2833 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
10 cjf 15078 . . 3 ∗:ℂ⟶ℂ
11 coecj.3 . . . 4 𝐴 = (coeff‘𝐹)
1211coef3 26160 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
13 fco 6742 . . 3 ((∗:ℂ⟶ℂ ∧ 𝐴:ℕ0⟶ℂ) → (∗ ∘ 𝐴):ℕ0⟶ℂ)
1410, 12, 13sylancr 586 . 2 (𝐹 ∈ (Poly‘𝑆) → (∗ ∘ 𝐴):ℕ0⟶ℂ)
15 fvco3 6992 . . . . . . . . 9 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
1612, 15sylan 579 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ 𝐴)‘𝑘) = (∗‘(𝐴𝑘)))
17 cj0 15132 . . . . . . . . . 10 (∗‘0) = 0
1817eqcomi 2737 . . . . . . . . 9 0 = (∗‘0)
1918a1i 11 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 = (∗‘0))
2016, 19eqeq12d 2744 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (∗‘(𝐴𝑘)) = (∗‘0)))
2112ffvelcdmda 7089 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
22 0cnd 11232 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → 0 ∈ ℂ)
23 cj11 15136 . . . . . . . 8 (((𝐴𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝐴𝑘)) = (∗‘0) ↔ (𝐴𝑘) = 0))
2421, 22, 23syl2anc 583 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((∗‘(𝐴𝑘)) = (∗‘0) ↔ (𝐴𝑘) = 0))
2520, 24bitrd 279 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) = 0 ↔ (𝐴𝑘) = 0))
2625necon3bid 2981 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 ↔ (𝐴𝑘) ≠ 0))
2711, 1dgrub2 26163 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
28 plyco0 26120 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
299, 12, 28syl2anc 583 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
3027, 29mpbid 231 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
3130r19.21bi 3244 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
3226, 31sylbid 239 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘𝑁))
3332ralrimiva 3142 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘𝑁))
34 plyco0 26120 . . . 4 ((𝑁 ∈ ℕ0 ∧ (∗ ∘ 𝐴):ℕ0⟶ℂ) → (((∗ ∘ 𝐴) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘𝑁)))
359, 14, 34syl2anc 583 . . 3 (𝐹 ∈ (Poly‘𝑆) → (((∗ ∘ 𝐴) “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 (((∗ ∘ 𝐴)‘𝑘) ≠ 0 → 𝑘𝑁)))
3633, 35mpbird 257 . 2 (𝐹 ∈ (Poly‘𝑆) → ((∗ ∘ 𝐴) “ (ℤ‘(𝑁 + 1))) = {0})
371, 2, 11plycjlem 26205 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ 𝐴)‘𝑘) · (𝑧𝑘))))
387, 9, 14, 36, 37coeeq 26155 1 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐺) = (∗ ∘ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2936  wral 3057  {csn 4625   class class class wbr 5143  cima 5676  ccom 5677  wf 6539  cfv 6543  (class class class)co 7415  cc 11131  0cc0 11133  1c1 11134   + caddc 11136  cle 11274  0cn0 12497  cuz 12847  ccj 15070  Polycply 26112  coeffccoe 26114  degcdgr 26115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-pm 8842  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-sup 9460  df-inf 9461  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-rp 13002  df-fz 13512  df-fzo 13655  df-fl 13784  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-clim 15459  df-rlim 15460  df-sum 15660  df-0p 25593  df-ply 26116  df-coe 26118  df-dgr 26119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator