![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcobijfs | Structured version Visualization version GIF version |
Description: Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien 9432. (Contributed by Thierry Arnoux, 25-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
Ref | Expression |
---|---|
fcobij.1 | ⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) |
fcobij.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
fcobij.3 | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
fcobij.4 | ⊢ (𝜑 → 𝑇 ∈ 𝑊) |
fcobijfs.5 | ⊢ (𝜑 → 𝑂 ∈ 𝑆) |
fcobijfs.6 | ⊢ 𝑄 = (𝐺‘𝑂) |
fcobijfs.7 | ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} |
fcobijfs.8 | ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑄} |
Ref | Expression |
---|---|
fcobijfs | ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcobijfs.7 | . . . 4 ⊢ 𝑋 = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} | |
2 | breq1 5151 | . . . . 5 ⊢ (ℎ = 𝑔 → (ℎ finSupp 𝑂 ↔ 𝑔 finSupp 𝑂)) | |
3 | 2 | cbvrabv 3439 | . . . 4 ⊢ {ℎ ∈ (𝑆 ↑m 𝑅) ∣ ℎ finSupp 𝑂} = {𝑔 ∈ (𝑆 ↑m 𝑅) ∣ 𝑔 finSupp 𝑂} |
4 | 1, 3 | eqtr4i 2759 | . . 3 ⊢ 𝑋 = {ℎ ∈ (𝑆 ↑m 𝑅) ∣ ℎ finSupp 𝑂} |
5 | fcobijfs.8 | . . 3 ⊢ 𝑌 = {ℎ ∈ (𝑇 ↑m 𝑅) ∣ ℎ finSupp 𝑄} | |
6 | fcobijfs.6 | . . 3 ⊢ 𝑄 = (𝐺‘𝑂) | |
7 | f1oi 6877 | . . . 4 ⊢ ( I ↾ 𝑅):𝑅–1-1-onto→𝑅 | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → ( I ↾ 𝑅):𝑅–1-1-onto→𝑅) |
9 | fcobij.1 | . . 3 ⊢ (𝜑 → 𝐺:𝑆–1-1-onto→𝑇) | |
10 | fcobij.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
11 | fcobij.3 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
12 | fcobij.4 | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑊) | |
13 | fcobijfs.5 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑆) | |
14 | 4, 5, 6, 8, 9, 10, 11, 10, 12, 13 | mapfien 9432 | . 2 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋–1-1-onto→𝑌) |
15 | 1 | ssrab3 4078 | . . . . . 6 ⊢ 𝑋 ⊆ (𝑆 ↑m 𝑅) |
16 | 15 | sseli 3976 | . . . . 5 ⊢ (𝑓 ∈ 𝑋 → 𝑓 ∈ (𝑆 ↑m 𝑅)) |
17 | coass 6269 | . . . . . 6 ⊢ ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) | |
18 | f1of 6839 | . . . . . . . . 9 ⊢ (𝐺:𝑆–1-1-onto→𝑇 → 𝐺:𝑆⟶𝑇) | |
19 | 9, 18 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:𝑆⟶𝑇) |
20 | elmapi 8868 | . . . . . . . 8 ⊢ (𝑓 ∈ (𝑆 ↑m 𝑅) → 𝑓:𝑅⟶𝑆) | |
21 | fco 6747 | . . . . . . . 8 ⊢ ((𝐺:𝑆⟶𝑇 ∧ 𝑓:𝑅⟶𝑆) → (𝐺 ∘ 𝑓):𝑅⟶𝑇) | |
22 | 19, 20, 21 | syl2an 595 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → (𝐺 ∘ 𝑓):𝑅⟶𝑇) |
23 | fcoi1 6771 | . . . . . . 7 ⊢ ((𝐺 ∘ 𝑓):𝑅⟶𝑇 → ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ 𝑓)) | |
24 | 22, 23 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → ((𝐺 ∘ 𝑓) ∘ ( I ↾ 𝑅)) = (𝐺 ∘ 𝑓)) |
25 | 17, 24 | eqtr3id 2782 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑆 ↑m 𝑅)) → (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) = (𝐺 ∘ 𝑓)) |
26 | 16, 25 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅))) = (𝐺 ∘ 𝑓)) |
27 | 26 | mpteq2dva 5248 | . . 3 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))) = (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓))) |
28 | 27 | f1oeq1d 6834 | . 2 ⊢ (𝜑 → ((𝑓 ∈ 𝑋 ↦ (𝐺 ∘ (𝑓 ∘ ( I ↾ 𝑅)))):𝑋–1-1-onto→𝑌 ↔ (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌)) |
29 | 14, 28 | mpbid 231 | 1 ⊢ (𝜑 → (𝑓 ∈ 𝑋 ↦ (𝐺 ∘ 𝑓)):𝑋–1-1-onto→𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {crab 3429 class class class wbr 5148 ↦ cmpt 5231 I cid 5575 ↾ cres 5680 ∘ ccom 5682 ⟶wf 6544 –1-1-onto→wf1o 6547 ‘cfv 6548 (class class class)co 7420 ↑m cmap 8845 finSupp cfsupp 9386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-1o 8487 df-map 8847 df-en 8965 df-fin 8968 df-fsupp 9387 |
This theorem is referenced by: eulerpartgbij 33992 |
Copyright terms: Public domain | W3C validator |