![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wallispilem2 | Structured version Visualization version GIF version |
Description: A first set of properties for the sequence 𝐼 that will be used in the proof of the Wallis product formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
wallispilem2.1 | ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) |
Ref | Expression |
---|---|
wallispilem2 | ⊢ ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑁 ∈ (ℤ≥‘2) → (𝐼‘𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12509 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | oveq2 7422 | . . . . . . . 8 ⊢ (𝑛 = 0 → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑0)) | |
3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑0)) |
4 | ioosscn 13410 | . . . . . . . . . . 11 ⊢ (0(,)π) ⊆ ℂ | |
5 | 4 | sseli 3974 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (0(,)π) → 𝑥 ∈ ℂ) |
6 | 5 | sincld 16098 | . . . . . . . . 9 ⊢ (𝑥 ∈ (0(,)π) → (sin‘𝑥) ∈ ℂ) |
7 | 6 | adantl 481 | . . . . . . . 8 ⊢ ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ) |
8 | 7 | exp0d 14128 | . . . . . . 7 ⊢ ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑0) = 1) |
9 | 3, 8 | eqtrd 2767 | . . . . . 6 ⊢ ((𝑛 = 0 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = 1) |
10 | 9 | itgeq2dv 25698 | . . . . 5 ⊢ (𝑛 = 0 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)1 d𝑥) |
11 | ioombl 25481 | . . . . . . 7 ⊢ (0(,)π) ∈ dom vol | |
12 | 0re 11238 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
13 | pire 26380 | . . . . . . . 8 ⊢ π ∈ ℝ | |
14 | ioovolcl 25486 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ π ∈ ℝ) → (vol‘(0(,)π)) ∈ ℝ) | |
15 | 12, 13, 14 | mp2an 691 | . . . . . . 7 ⊢ (vol‘(0(,)π)) ∈ ℝ |
16 | ax-1cn 11188 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
17 | itgconst 25735 | . . . . . . 7 ⊢ (((0(,)π) ∈ dom vol ∧ (vol‘(0(,)π)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π)))) | |
18 | 11, 15, 16, 17 | mp3an 1458 | . . . . . 6 ⊢ ∫(0(,)π)1 d𝑥 = (1 · (vol‘(0(,)π))) |
19 | 15 | recni 11250 | . . . . . . . 8 ⊢ (vol‘(0(,)π)) ∈ ℂ |
20 | 19 | mullidi 11241 | . . . . . . 7 ⊢ (1 · (vol‘(0(,)π))) = (vol‘(0(,)π)) |
21 | pipos 26382 | . . . . . . . . . 10 ⊢ 0 < π | |
22 | 12, 13, 21 | ltleii 11359 | . . . . . . . . 9 ⊢ 0 ≤ π |
23 | volioo 25485 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π) → (vol‘(0(,)π)) = (π − 0)) | |
24 | 12, 13, 22, 23 | mp3an 1458 | . . . . . . . 8 ⊢ (vol‘(0(,)π)) = (π − 0) |
25 | 13 | recni 11250 | . . . . . . . . 9 ⊢ π ∈ ℂ |
26 | 25 | subid1i 11554 | . . . . . . . 8 ⊢ (π − 0) = π |
27 | 24, 26 | eqtri 2755 | . . . . . . 7 ⊢ (vol‘(0(,)π)) = π |
28 | 20, 27 | eqtri 2755 | . . . . . 6 ⊢ (1 · (vol‘(0(,)π))) = π |
29 | 18, 28 | eqtri 2755 | . . . . 5 ⊢ ∫(0(,)π)1 d𝑥 = π |
30 | 10, 29 | eqtrdi 2783 | . . . 4 ⊢ (𝑛 = 0 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = π) |
31 | wallispilem2.1 | . . . 4 ⊢ 𝐼 = (𝑛 ∈ ℕ0 ↦ ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥) | |
32 | 13 | elexi 3489 | . . . 4 ⊢ π ∈ V |
33 | 30, 31, 32 | fvmpt 6999 | . . 3 ⊢ (0 ∈ ℕ0 → (𝐼‘0) = π) |
34 | 1, 33 | ax-mp 5 | . 2 ⊢ (𝐼‘0) = π |
35 | 1nn0 12510 | . . . 4 ⊢ 1 ∈ ℕ0 | |
36 | simpl 482 | . . . . . . . 8 ⊢ ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → 𝑛 = 1) | |
37 | 36 | oveq2d 7430 | . . . . . . 7 ⊢ ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = ((sin‘𝑥)↑1)) |
38 | 6 | adantl 481 | . . . . . . . 8 ⊢ ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → (sin‘𝑥) ∈ ℂ) |
39 | 38 | exp1d 14129 | . . . . . . 7 ⊢ ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑1) = (sin‘𝑥)) |
40 | 37, 39 | eqtrd 2767 | . . . . . 6 ⊢ ((𝑛 = 1 ∧ 𝑥 ∈ (0(,)π)) → ((sin‘𝑥)↑𝑛) = (sin‘𝑥)) |
41 | 40 | itgeq2dv 25698 | . . . . 5 ⊢ (𝑛 = 1 → ∫(0(,)π)((sin‘𝑥)↑𝑛) d𝑥 = ∫(0(,)π)(sin‘𝑥) d𝑥) |
42 | itgex 25687 | . . . . 5 ⊢ ∫(0(,)π)(sin‘𝑥) d𝑥 ∈ V | |
43 | 41, 31, 42 | fvmpt 6999 | . . . 4 ⊢ (1 ∈ ℕ0 → (𝐼‘1) = ∫(0(,)π)(sin‘𝑥) d𝑥) |
44 | 35, 43 | ax-mp 5 | . . 3 ⊢ (𝐼‘1) = ∫(0(,)π)(sin‘𝑥) d𝑥 |
45 | itgsin0pi 45263 | . . 3 ⊢ ∫(0(,)π)(sin‘𝑥) d𝑥 = 2 | |
46 | 44, 45 | eqtri 2755 | . 2 ⊢ (𝐼‘1) = 2 |
47 | id 22 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ (ℤ≥‘2)) | |
48 | 31, 47 | itgsinexp 45266 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝐼‘𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2)))) |
49 | 34, 46, 48 | 3pm3.2i 1337 | 1 ⊢ ((𝐼‘0) = π ∧ (𝐼‘1) = 2 ∧ (𝑁 ∈ (ℤ≥‘2) → (𝐼‘𝑁) = (((𝑁 − 1) / 𝑁) · (𝐼‘(𝑁 − 2))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ↦ cmpt 5225 dom cdm 5672 ‘cfv 6542 (class class class)co 7414 ℂcc 11128 ℝcr 11129 0cc0 11130 1c1 11131 · cmul 11135 ≤ cle 11271 − cmin 11466 / cdiv 11893 2c2 12289 ℕ0cn0 12494 ℤ≥cuz 12844 (,)cioo 13348 ↑cexp 14050 sincsin 16031 πcpi 16034 volcvol 25379 ∫citg 25534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cc 10450 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-symdif 4238 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-disj 5108 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-ofr 7680 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8718 df-map 8838 df-pm 8839 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-fi 9426 df-sup 9457 df-inf 9458 df-oi 9525 df-dju 9916 df-card 9954 df-acn 9957 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-ioo 13352 df-ioc 13353 df-ico 13354 df-icc 13355 df-fz 13509 df-fzo 13652 df-fl 13781 df-mod 13859 df-seq 13991 df-exp 14051 df-fac 14257 df-bc 14286 df-hash 14314 df-shft 15038 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-limsup 15439 df-clim 15456 df-rlim 15457 df-sum 15657 df-ef 16035 df-sin 16037 df-cos 16038 df-pi 16040 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-hom 17248 df-cco 17249 df-rest 17395 df-topn 17396 df-0g 17414 df-gsum 17415 df-topgen 17416 df-pt 17417 df-prds 17420 df-xrs 17475 df-qtop 17480 df-imas 17481 df-xps 17483 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-mulg 19015 df-cntz 19259 df-cmn 19728 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-fbas 21263 df-fg 21264 df-cnfld 21267 df-top 22783 df-topon 22800 df-topsp 22822 df-bases 22836 df-cld 22910 df-ntr 22911 df-cls 22912 df-nei 22989 df-lp 23027 df-perf 23028 df-cn 23118 df-cnp 23119 df-haus 23206 df-cmp 23278 df-tx 23453 df-hmeo 23646 df-fil 23737 df-fm 23829 df-flim 23830 df-flf 23831 df-xms 24213 df-ms 24214 df-tms 24215 df-cncf 24785 df-ovol 25380 df-vol 25381 df-mbf 25535 df-itg1 25536 df-itg2 25537 df-ibl 25538 df-itg 25539 df-0p 25586 df-limc 25782 df-dv 25783 |
This theorem is referenced by: wallispilem3 45378 wallispilem4 45379 |
Copyright terms: Public domain | W3C validator |