Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1sub Structured version   Visualization version   GIF version

Theorem ressply1sub 33255
Description: A restricted polynomial algebra has the same subtraction operation. (Contributed by Thierry Arnoux, 30-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1.1 𝑃 = (𝑆s 𝐵)
ressply1sub.1 (𝜑𝑋𝐵)
ressply1sub.2 (𝜑𝑌𝐵)
Assertion
Ref Expression
ressply1sub (𝜑 → (𝑋(-g𝑈)𝑌) = (𝑋(-g𝑃)𝑌))

Proof of Theorem ressply1sub
StepHypRef Expression
1 ressply.1 . . . . 5 𝑆 = (Poly1𝑅)
2 ressply.2 . . . . 5 𝐻 = (𝑅s 𝑇)
3 ressply.3 . . . . 5 𝑈 = (Poly1𝐻)
4 ressply.4 . . . . 5 𝐵 = (Base‘𝑈)
5 ressply.5 . . . . 5 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 ressply1.1 . . . . 5 𝑃 = (𝑆s 𝐵)
7 ressply1sub.2 . . . . 5 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7ressply1invg 33254 . . . 4 (𝜑 → ((invg𝑈)‘𝑌) = ((invg𝑃)‘𝑌))
98oveq2d 7436 . . 3 (𝜑 → (𝑋(+g𝑈)((invg𝑈)‘𝑌)) = (𝑋(+g𝑈)((invg𝑃)‘𝑌)))
10 ressply1sub.1 . . . . 5 (𝜑𝑋𝐵)
111, 2, 3, 4subrgply1 22151 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))
12 subrgsubg 20516 . . . . . . . . 9 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆))
135, 11, 123syl 18 . . . . . . . 8 (𝜑𝐵 ∈ (SubGrp‘𝑆))
146subggrp 19084 . . . . . . . 8 (𝐵 ∈ (SubGrp‘𝑆) → 𝑃 ∈ Grp)
1513, 14syl 17 . . . . . . 7 (𝜑𝑃 ∈ Grp)
161, 2, 3, 4, 5, 6ressply1bas 22147 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑃))
177, 16eleqtrd 2831 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝑃))
18 eqid 2728 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
19 eqid 2728 . . . . . . . 8 (invg𝑃) = (invg𝑃)
2018, 19grpinvcl 18944 . . . . . . 7 ((𝑃 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑃)) → ((invg𝑃)‘𝑌) ∈ (Base‘𝑃))
2115, 17, 20syl2anc 583 . . . . . 6 (𝜑 → ((invg𝑃)‘𝑌) ∈ (Base‘𝑃))
2221, 16eleqtrrd 2832 . . . . 5 (𝜑 → ((invg𝑃)‘𝑌) ∈ 𝐵)
2310, 22jca 511 . . . 4 (𝜑 → (𝑋𝐵 ∧ ((invg𝑃)‘𝑌) ∈ 𝐵))
241, 2, 3, 4, 5, 6ressply1add 22148 . . . 4 ((𝜑 ∧ (𝑋𝐵 ∧ ((invg𝑃)‘𝑌) ∈ 𝐵)) → (𝑋(+g𝑈)((invg𝑃)‘𝑌)) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
2523, 24mpdan 686 . . 3 (𝜑 → (𝑋(+g𝑈)((invg𝑃)‘𝑌)) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
269, 25eqtrd 2768 . 2 (𝜑 → (𝑋(+g𝑈)((invg𝑈)‘𝑌)) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
27 eqid 2728 . . . 4 (+g𝑈) = (+g𝑈)
28 eqid 2728 . . . 4 (invg𝑈) = (invg𝑈)
29 eqid 2728 . . . 4 (-g𝑈) = (-g𝑈)
304, 27, 28, 29grpsubval 18942 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋(-g𝑈)𝑌) = (𝑋(+g𝑈)((invg𝑈)‘𝑌)))
3110, 7, 30syl2anc 583 . 2 (𝜑 → (𝑋(-g𝑈)𝑌) = (𝑋(+g𝑈)((invg𝑈)‘𝑌)))
3210, 16eleqtrd 2831 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
33 eqid 2728 . . . 4 (+g𝑃) = (+g𝑃)
34 eqid 2728 . . . 4 (-g𝑃) = (-g𝑃)
3518, 33, 19, 34grpsubval 18942 . . 3 ((𝑋 ∈ (Base‘𝑃) ∧ 𝑌 ∈ (Base‘𝑃)) → (𝑋(-g𝑃)𝑌) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
3632, 17, 35syl2anc 583 . 2 (𝜑 → (𝑋(-g𝑃)𝑌) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
3726, 31, 363eqtr4d 2778 1 (𝜑 → (𝑋(-g𝑈)𝑌) = (𝑋(-g𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  Basecbs 17180  s cress 17209  +gcplusg 17233  Grpcgrp 18890  invgcminusg 18891  -gcsg 18892  SubGrpcsubg 19075  SubRingcsubrg 20506  Poly1cpl1 22096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-ofr 7686  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-sup 9466  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-fz 13518  df-fzo 13661  df-seq 14000  df-hash 14323  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-hom 17257  df-cco 17258  df-0g 17423  df-gsum 17424  df-prds 17429  df-pws 17431  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-mhm 18740  df-submnd 18741  df-grp 18893  df-minusg 18894  df-sbg 18895  df-mulg 19024  df-subg 19078  df-ghm 19168  df-cntz 19268  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-ring 20175  df-subrng 20483  df-subrg 20508  df-lmod 20745  df-lss 20816  df-ascl 21789  df-psr 21842  df-mpl 21844  df-opsr 21846  df-psr1 22099  df-ply1 22101
This theorem is referenced by:  evls1subd  33256  irngss  33365
  Copyright terms: Public domain W3C validator