![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressply1sub | Structured version Visualization version GIF version |
Description: A restricted polynomial algebra has the same subtraction operation. (Contributed by Thierry Arnoux, 30-Jan-2025.) |
Ref | Expression |
---|---|
ressply.1 | ⊢ 𝑆 = (Poly1‘𝑅) |
ressply.2 | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressply.3 | ⊢ 𝑈 = (Poly1‘𝐻) |
ressply.4 | ⊢ 𝐵 = (Base‘𝑈) |
ressply.5 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressply1.1 | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
ressply1sub.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ressply1sub.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
ressply1sub | ⊢ (𝜑 → (𝑋(-g‘𝑈)𝑌) = (𝑋(-g‘𝑃)𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressply.1 | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
2 | ressply.2 | . . . . 5 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
3 | ressply.3 | . . . . 5 ⊢ 𝑈 = (Poly1‘𝐻) | |
4 | ressply.4 | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
5 | ressply.5 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
6 | ressply1.1 | . . . . 5 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
7 | ressply1sub.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ressply1invg 33254 | . . . 4 ⊢ (𝜑 → ((invg‘𝑈)‘𝑌) = ((invg‘𝑃)‘𝑌)) |
9 | 8 | oveq2d 7436 | . . 3 ⊢ (𝜑 → (𝑋(+g‘𝑈)((invg‘𝑈)‘𝑌)) = (𝑋(+g‘𝑈)((invg‘𝑃)‘𝑌))) |
10 | ressply1sub.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | 1, 2, 3, 4 | subrgply1 22151 | . . . . . . . . 9 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
12 | subrgsubg 20516 | . . . . . . . . 9 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆)) | |
13 | 5, 11, 12 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘𝑆)) |
14 | 6 | subggrp 19084 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubGrp‘𝑆) → 𝑃 ∈ Grp) |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ Grp) |
16 | 1, 2, 3, 4, 5, 6 | ressply1bas 22147 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
17 | 7, 16 | eleqtrd 2831 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑃)) |
18 | eqid 2728 | . . . . . . . 8 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
19 | eqid 2728 | . . . . . . . 8 ⊢ (invg‘𝑃) = (invg‘𝑃) | |
20 | 18, 19 | grpinvcl 18944 | . . . . . . 7 ⊢ ((𝑃 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑃)) → ((invg‘𝑃)‘𝑌) ∈ (Base‘𝑃)) |
21 | 15, 17, 20 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝑃)‘𝑌) ∈ (Base‘𝑃)) |
22 | 21, 16 | eleqtrrd 2832 | . . . . 5 ⊢ (𝜑 → ((invg‘𝑃)‘𝑌) ∈ 𝐵) |
23 | 10, 22 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ ((invg‘𝑃)‘𝑌) ∈ 𝐵)) |
24 | 1, 2, 3, 4, 5, 6 | ressply1add 22148 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ ((invg‘𝑃)‘𝑌) ∈ 𝐵)) → (𝑋(+g‘𝑈)((invg‘𝑃)‘𝑌)) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
25 | 23, 24 | mpdan 686 | . . 3 ⊢ (𝜑 → (𝑋(+g‘𝑈)((invg‘𝑃)‘𝑌)) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
26 | 9, 25 | eqtrd 2768 | . 2 ⊢ (𝜑 → (𝑋(+g‘𝑈)((invg‘𝑈)‘𝑌)) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
27 | eqid 2728 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
28 | eqid 2728 | . . . 4 ⊢ (invg‘𝑈) = (invg‘𝑈) | |
29 | eqid 2728 | . . . 4 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
30 | 4, 27, 28, 29 | grpsubval 18942 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(-g‘𝑈)𝑌) = (𝑋(+g‘𝑈)((invg‘𝑈)‘𝑌))) |
31 | 10, 7, 30 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑋(-g‘𝑈)𝑌) = (𝑋(+g‘𝑈)((invg‘𝑈)‘𝑌))) |
32 | 10, 16 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
33 | eqid 2728 | . . . 4 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
34 | eqid 2728 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
35 | 18, 33, 19, 34 | grpsubval 18942 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑃) ∧ 𝑌 ∈ (Base‘𝑃)) → (𝑋(-g‘𝑃)𝑌) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
36 | 32, 17, 35 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑋(-g‘𝑃)𝑌) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
37 | 26, 31, 36 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → (𝑋(-g‘𝑈)𝑌) = (𝑋(-g‘𝑃)𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 ↾s cress 17209 +gcplusg 17233 Grpcgrp 18890 invgcminusg 18891 -gcsg 18892 SubGrpcsubg 19075 SubRingcsubrg 20506 Poly1cpl1 22096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-ofr 7686 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-sup 9466 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-fz 13518 df-fzo 13661 df-seq 14000 df-hash 14323 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-hom 17257 df-cco 17258 df-0g 17423 df-gsum 17424 df-prds 17429 df-pws 17431 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-mhm 18740 df-submnd 18741 df-grp 18893 df-minusg 18894 df-sbg 18895 df-mulg 19024 df-subg 19078 df-ghm 19168 df-cntz 19268 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-subrng 20483 df-subrg 20508 df-lmod 20745 df-lss 20816 df-ascl 21789 df-psr 21842 df-mpl 21844 df-opsr 21846 df-psr1 22099 df-ply1 22101 |
This theorem is referenced by: evls1subd 33256 irngss 33365 |
Copyright terms: Public domain | W3C validator |