![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgsubg | Structured version Visualization version GIF version |
Description: A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.) |
Ref | Expression |
---|---|
subrgsubg | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgrcl 20515 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
2 | ringgrp 20178 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Grp) |
4 | eqid 2728 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 4 | subrgss 20511 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
6 | eqid 2728 | . . . 4 ⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) | |
7 | 6 | subrgring 20513 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
8 | ringgrp 20178 | . . 3 ⊢ ((𝑅 ↾s 𝐴) ∈ Ring → (𝑅 ↾s 𝐴) ∈ Grp) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Grp) |
10 | 4 | issubg 19081 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝑅 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ Grp)) |
11 | 3, 5, 9, 10 | syl3anbrc 1341 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ⊆ wss 3947 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 ↾s cress 17209 Grpcgrp 18890 SubGrpcsubg 19075 Ringcrg 20173 SubRingcsubrg 20506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-subg 19078 df-ring 20175 df-subrg 20508 |
This theorem is referenced by: subrg0 20518 subrgbas 20520 subrgacl 20522 issubrg2 20531 subrgint 20534 resrhm 20540 resrhm2b 20541 rhmima 20543 subdrgint 20691 primefld0cl 20694 abvres 20719 zsssubrg 21358 gzrngunitlem 21365 zringlpirlem1 21388 zringcyg 21395 zringsubgval 21396 prmirred 21400 zndvds 21483 resubgval 21541 rzgrp 21555 issubassa2 21825 resspsrmul 21919 subrgpsr 21921 mplbas2 21980 gsumply1subr 22152 subrgnrg 24603 sranlm 24614 clmsub 25020 clmneg 25021 clmabs 25023 clmsubcl 25026 isncvsngp 25090 cphsqrtcl3 25128 tcphcph 25178 plypf1 26159 dvply2g 26232 dvply2gOLD 26233 taylply2 26315 taylply2OLD 26316 circgrp 26499 circsubm 26500 jensenlem2 26933 amgmlem 26935 lgseisenlem4 27324 qrng0 27567 qrngneg 27569 subrgchr 32958 1fldgenq 33022 nn0archi 33072 idlinsubrg 33160 ressply10g 33252 ressply1invg 33254 ressply1sub 33255 evls1subd 33256 drgext0gsca 33291 fedgmullem1 33327 fedgmullem2 33328 evls1fldgencl 33358 irngss 33365 algextdeglem1 33385 algextdeglem2 33386 algextdeglem3 33387 algextdeglem4 33388 algextdeglem5 33389 rezh 33572 qqhcn 33592 qqhucn 33593 fsumcnsrcl 42590 cnsrplycl 42591 rngunsnply 42597 amgmwlem 48235 |
Copyright terms: Public domain | W3C validator |