![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subggrp | Structured version Visualization version GIF version |
Description: A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
Ref | Expression |
---|---|
subggrp | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subggrp.h | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | eqid 2728 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 2 | issubg 19081 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
4 | 3 | simp3bi 1145 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
5 | 1, 4 | eqeltrid 2833 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 ↾s cress 17209 Grpcgrp 18890 SubGrpcsubg 19075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-subg 19078 |
This theorem is referenced by: subg0 19087 subginv 19088 subg0cl 19089 subginvcl 19090 subgcl 19091 issubg2 19096 issubgrpd 19098 subsubg 19104 resghm 19186 resghm2b 19188 subgga 19251 gasubg 19253 odsubdvds 19526 pgp0 19551 subgpgp 19552 sylow2blem2 19576 slwhash 19579 fislw 19580 subglsm 19628 pj1ghm 19658 subgabl 19791 cntrabl 19798 cycsubgcyg 19856 subgdmdprd 19991 subgdprd 19992 ablfacrplem 20022 pgpfaclem1 20038 pgpfaclem3 20040 ablfaclem3 20044 issubrg2 20531 subdrgint 20691 islss3 20843 zringcyg 21395 cnmsgngrp 21511 psgnghm 21512 mplgrp 21959 scmatghm 22448 subgtgp 24022 subgngp 24557 reefgim 26400 ressply1sub 33255 amgmlemALT 48236 |
Copyright terms: Public domain | W3C validator |