![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnfge | Structured version Visualization version GIF version |
Description: Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pnfge | ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnlt 13132 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴) | |
2 | pnfxr 11290 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | xrlenlt 11301 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) | |
4 | 2, 3 | mpan2 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ≤ +∞ ↔ ¬ +∞ < 𝐴)) |
5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2099 class class class wbr 5142 +∞cpnf 11267 ℝ*cxr 11269 < clt 11270 ≤ cle 11271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-cnv 5680 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 |
This theorem is referenced by: xnn0n0n1ge2b 13135 0lepnf 13136 nltpnft 13167 xrre2 13173 xnn0lem1lt 13247 xleadd1a 13256 xlt2add 13263 xsubge0 13264 xlesubadd 13266 xlemul1a 13291 elicore 13400 elico2 13412 iccmax 13424 elxrge0 13458 nfile 14342 hashdom 14362 hashdomi 14363 hashge1 14372 hashss 14392 hashge2el2difr 14466 pcdvdsb 16829 pc2dvds 16839 pcaddlem 16848 xrsdsreclblem 21332 leordtvallem1 23101 lecldbas 23110 isxmet2d 24220 blssec 24328 nmoix 24633 nmoleub 24635 xrtgioo 24709 xrge0tsms 24737 metdstri 24754 nmoleub2lem 25028 ovolf 25398 ovollb2 25405 ovoliun 25421 ovolre 25441 voliunlem3 25468 volsup 25472 icombl 25480 ioombl 25481 ismbfd 25555 itg2seq 25659 dvfsumrlim 25953 dvfsumrlim2 25954 radcnvcl 26340 xrlimcnp 26887 logfacbnd3 27143 log2sumbnd 27464 tgldimor 28293 xrdifh 32532 xrge0tsmsd 32749 unitssxrge0 33437 tpr2rico 33449 lmxrge0 33489 esumle 33613 esumlef 33617 esumpinfval 33628 esumpinfsum 33632 esumcvgsum 33643 ddemeas 33791 sxbrsigalem2 33842 omssubadd 33856 carsgclctunlem3 33876 signsply0 34119 ismblfin 37069 xrgepnfd 44636 supxrgelem 44642 supxrge 44643 infrpge 44656 xrlexaddrp 44657 infleinflem1 44675 infleinf 44677 infxrpnf 44751 pnfged 44779 ge0xrre 44839 iblsplit 45277 ismbl3 45297 ovolsplit 45299 sge0cl 45692 sge0less 45703 sge0pr 45705 sge0le 45718 sge0split 45720 carageniuncl 45834 ovnsubaddlem1 45881 hspmbl 45940 pimiooltgt 46021 pgrpgt2nabl 47353 |
Copyright terms: Public domain | W3C validator |