MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsdsreclblem Structured version   Visualization version   GIF version

Theorem xrsdsreclblem 21332
Description: Lemma for xrsdsreclb 21333. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
xrsds.d 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsdsreclblem (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))

Proof of Theorem xrsdsreclblem
StepHypRef Expression
1 necom 2989 . . . . 5 (𝐴𝐵𝐵𝐴)
2 xrleltne 13148 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵𝐵𝐴))
3 mnfxr 11293 . . . . . . . . . . . 12 -∞ ∈ ℝ*
43a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ ∈ ℝ*)
5 simpl1 1189 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 ∈ ℝ*)
6 simpl2 1190 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ∈ ℝ*)
7 pnfnre 11277 . . . . . . . . . . . . . 14 +∞ ∉ ℝ
87neli 3043 . . . . . . . . . . . . 13 ¬ +∞ ∈ ℝ
9 mnfle 13138 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
105, 9syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ ≤ 𝐴)
11 simpl3 1191 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 < 𝐵)
124, 5, 6, 10, 11xrlelttrd 13163 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < 𝐵)
13 xrltne 13166 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → 𝐵 ≠ -∞)
144, 6, 12, 13syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ≠ -∞)
15 xaddpnf1 13229 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
166, 14, 15syl2anc 583 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 +𝑒 +∞) = +∞)
1716eleq1d 2813 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ((𝐵 +𝑒 +∞) ∈ ℝ ↔ +∞ ∈ ℝ))
188, 17mtbiri 327 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ¬ (𝐵 +𝑒 +∞) ∈ ℝ)
19 ngtmnft 13169 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
205, 19syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
21 simpr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ)
22 xnegeq 13210 . . . . . . . . . . . . . . . . 17 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
23 xnegmnf 13213 . . . . . . . . . . . . . . . . 17 -𝑒-∞ = +∞
2422, 23eqtrdi 2783 . . . . . . . . . . . . . . . 16 (𝐴 = -∞ → -𝑒𝐴 = +∞)
2524oveq2d 7430 . . . . . . . . . . . . . . 15 (𝐴 = -∞ → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 +𝑒 +∞))
2625eleq1d 2813 . . . . . . . . . . . . . 14 (𝐴 = -∞ → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ (𝐵 +𝑒 +∞) ∈ ℝ))
2721, 26syl5ibcom 244 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 = -∞ → (𝐵 +𝑒 +∞) ∈ ℝ))
2820, 27sylbird 260 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (¬ -∞ < 𝐴 → (𝐵 +𝑒 +∞) ∈ ℝ))
2918, 28mt3d 148 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < 𝐴)
30 xrre2 13173 . . . . . . . . . . 11 (((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < 𝐵)) → 𝐴 ∈ ℝ)
314, 5, 6, 29, 11, 30syl32anc 1376 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
32 pnfxr 11290 . . . . . . . . . . . 12 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → +∞ ∈ ℝ*)
345xnegcld 13303 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒𝐴 ∈ ℝ*)
35 xnegpnf 13212 . . . . . . . . . . . . . . . . 17 -𝑒+∞ = -∞
36 pnfge 13134 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
376, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ≤ +∞)
385, 6, 33, 11, 37xrltletrd 13164 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 < +∞)
39 xltnegi 13219 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 < +∞) → -𝑒+∞ < -𝑒𝐴)
405, 33, 38, 39syl3anc 1369 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒+∞ < -𝑒𝐴)
4135, 40eqbrtrrid 5178 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < -𝑒𝐴)
42 xrltne 13166 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ* ∧ -∞ < -𝑒𝐴) → -𝑒𝐴 ≠ -∞)
434, 34, 41, 42syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒𝐴 ≠ -∞)
44 xaddpnf2 13230 . . . . . . . . . . . . . . 15 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ -∞) → (+∞ +𝑒 -𝑒𝐴) = +∞)
4534, 43, 44syl2anc 583 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (+∞ +𝑒 -𝑒𝐴) = +∞)
4645eleq1d 2813 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ((+∞ +𝑒 -𝑒𝐴) ∈ ℝ ↔ +∞ ∈ ℝ))
478, 46mtbiri 327 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ¬ (+∞ +𝑒 -𝑒𝐴) ∈ ℝ)
48 nltpnft 13167 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
496, 48syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
50 oveq1 7421 . . . . . . . . . . . . . . 15 (𝐵 = +∞ → (𝐵 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -𝑒𝐴))
5150eleq1d 2813 . . . . . . . . . . . . . 14 (𝐵 = +∞ → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5221, 51syl5ibcom 244 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 = +∞ → (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5349, 52sylbird 260 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (¬ 𝐵 < +∞ → (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5447, 53mt3d 148 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 < +∞)
55 xrre2 13173 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < +∞)) → 𝐵 ∈ ℝ)
565, 6, 33, 11, 54, 55syl32anc 1376 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ∈ ℝ)
5731, 56jca 511 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
5857ex 412 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
59583expia 1119 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
60593adant3 1130 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
612, 60sylbird 260 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐵𝐴 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
621, 61biimtrid 241 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
63623exp 1117 . . 3 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐵 → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))))
6463com34 91 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐵 → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))))
65643imp1 1345 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935   class class class wbr 5142  cfv 6542  (class class class)co 7414  cr 11129  +∞cpnf 11267  -∞cmnf 11268  *cxr 11269   < clt 11270  cle 11271  -𝑒cxne 13113   +𝑒 cxad 13114  distcds 17233  *𝑠cxrs 17473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-xneg 13116  df-xadd 13117
This theorem is referenced by:  xrsdsreclb  21333
  Copyright terms: Public domain W3C validator