![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodring | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodring.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lmodring | ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2728 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2728 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | lmodring.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | eqid 2728 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2728 | . . 3 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
7 | eqid 2728 | . . 3 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
8 | eqid 2728 | . . 3 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20741 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘𝐹)𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘𝐹)( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp2bi 1144 | 1 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 +gcplusg 17227 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 Grpcgrp 18884 1rcur 20115 Ringcrg 20167 LModclmod 20737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5301 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-ral 3058 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-iota 6495 df-fv 6551 df-ov 7418 df-lmod 20739 |
This theorem is referenced by: lmodfgrp 20746 lmodmcl 20750 lmod0cl 20765 lmod1cl 20766 lmod0vs 20772 lmodvs0 20773 lmodvsmmulgdi 20774 lmodvsneg 20783 lmodsubvs 20795 lmodsubdi 20796 lmodsubdir 20797 lssvnegcl 20834 islss3 20837 pwslmod 20848 lmodvsinv 20915 islmhm2 20917 lbsind2 20960 lspsneq 21004 lspexch 21011 ip2subdi 21570 isphld 21580 ocvlss 21598 frlmup1 21726 frlmup2 21727 frlmup3 21728 frlmup4 21729 islindf5 21767 lmisfree 21770 assasca 21790 asclghm 21810 ascl1 21812 ascldimul 21815 tlmtgp 24094 clmring 24991 lmodslmd 32906 imaslmod 33060 linds2eq 33091 lindsadd 37081 lfl0 38532 lfladd 38533 lflsub 38534 lfl0f 38536 lfladdcl 38538 lfladdcom 38539 lfladdass 38540 lfladd0l 38541 lflnegcl 38542 lflnegl 38543 lflvscl 38544 lflvsdi1 38545 lflvsdi2 38546 lflvsass 38548 lfl0sc 38549 lflsc0N 38550 lfl1sc 38551 lkrlss 38562 eqlkr 38566 eqlkr3 38568 lkrlsp 38569 ldualvsass 38608 lduallmodlem 38619 ldualvsubcl 38623 ldualvsubval 38624 lkrin 38631 dochfl1 40944 lcfl7lem 40967 lclkrlem2m 40987 lclkrlem2o 40989 lclkrlem2p 40990 lcfrlem1 41010 lcfrlem2 41011 lcfrlem3 41012 lcfrlem29 41039 lcfrlem33 41043 lcdvsubval 41086 mapdpglem30 41170 baerlem3lem1 41175 baerlem5alem1 41176 baerlem5blem1 41177 baerlem5blem2 41180 hgmapval1 41361 hdmapinvlem3 41388 hdmapinvlem4 41389 hdmapglem5 41390 hgmapvvlem1 41391 hdmapglem7b 41396 hdmapglem7 41397 lvecring 41759 prjspertr 42020 lmod0rng 47282 linc0scn0 47482 linc1 47484 lincscm 47489 lincscmcl 47491 el0ldep 47525 lindsrng01 47527 lindszr 47528 ldepsprlem 47531 ldepspr 47532 lincresunit3lem3 47533 lincresunitlem1 47534 lincresunitlem2 47535 lincresunit2 47537 lincresunit3lem1 47538 |
Copyright terms: Public domain | W3C validator |