![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsneg | Structured version Visualization version GIF version |
Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
lmodvsneg.b | ⊢ 𝐵 = (Base‘𝑊) |
lmodvsneg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvsneg.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvsneg.n | ⊢ 𝑁 = (invg‘𝑊) |
lmodvsneg.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodvsneg.m | ⊢ 𝑀 = (invg‘𝐹) |
lmodvsneg.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodvsneg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lmodvsneg.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
Ref | Expression |
---|---|
lmodvsneg | ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsneg.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lmodvsneg.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2 | lmodring 20745 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Ring) |
5 | ringgrp 20172 | . . . . 5 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Grp) |
7 | lmodvsneg.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
8 | eqid 2728 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 7, 8 | ringidcl 20196 | . . . . 5 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
10 | 4, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
11 | lmodvsneg.m | . . . . 5 ⊢ 𝑀 = (invg‘𝐹) | |
12 | 7, 11 | grpinvcl 18938 | . . . 4 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑀‘(1r‘𝐹)) ∈ 𝐾) |
13 | 6, 10, 12 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑀‘(1r‘𝐹)) ∈ 𝐾) |
14 | lmodvsneg.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
15 | lmodvsneg.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
16 | lmodvsneg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
17 | lmodvsneg.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
18 | eqid 2728 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
19 | 16, 2, 17, 7, 18 | lmodvsass 20764 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ((𝑀‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋))) |
20 | 1, 13, 14, 15, 19 | syl13anc 1370 | . 2 ⊢ (𝜑 → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋))) |
21 | 7, 18, 8, 11, 4, 14 | ringnegl 20232 | . . 3 ⊢ (𝜑 → ((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) = (𝑀‘𝑅)) |
22 | 21 | oveq1d 7430 | . 2 ⊢ (𝜑 → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘𝑅) · 𝑋)) |
23 | 16, 2, 17, 7 | lmodvscl 20755 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · 𝑋) ∈ 𝐵) |
24 | 1, 14, 15, 23 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝐵) |
25 | lmodvsneg.n | . . . 4 ⊢ 𝑁 = (invg‘𝑊) | |
26 | 16, 25, 2, 17, 8, 11 | lmodvneg1 20782 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝐵) → ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
27 | 1, 24, 26 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
28 | 20, 22, 27 | 3eqtr3rd 2777 | 1 ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 Grpcgrp 18884 invgcminusg 18885 1rcur 20115 Ringcrg 20167 LModclmod 20737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-plusg 17240 df-0g 17417 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18887 df-minusg 18888 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-lmod 20739 |
This theorem is referenced by: lmodnegadd 20788 clmvsneg 25021 linds2eq 33091 baerlem5alem1 41176 lincext3 47515 lindslinindimp2lem4 47520 lincresunit3 47540 |
Copyright terms: Public domain | W3C validator |