![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmup3 | Structured version Visualization version GIF version |
Description: The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) |
Ref | Expression |
---|---|
frlmup.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmup.b | ⊢ 𝐵 = (Base‘𝐹) |
frlmup.c | ⊢ 𝐶 = (Base‘𝑇) |
frlmup.v | ⊢ · = ( ·𝑠 ‘𝑇) |
frlmup.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
frlmup.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
frlmup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
frlmup.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
frlmup.a | ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
frlmup.k | ⊢ 𝐾 = (LSpan‘𝑇) |
Ref | Expression |
---|---|
frlmup3 | ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmup.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | frlmup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
3 | frlmup.c | . . . 4 ⊢ 𝐶 = (Base‘𝑇) | |
4 | frlmup.v | . . . 4 ⊢ · = ( ·𝑠 ‘𝑇) | |
5 | frlmup.e | . . . 4 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) | |
6 | frlmup.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
7 | frlmup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
8 | frlmup.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
9 | frlmup.a | . . . 4 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | frlmup1 21726 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
11 | eqid 2728 | . . . . . . . 8 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
12 | 11 | lmodring 20745 | . . . . . . 7 ⊢ (𝑇 ∈ LMod → (Scalar‘𝑇) ∈ Ring) |
13 | 6, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Scalar‘𝑇) ∈ Ring) |
14 | 8, 13 | eqeltrd 2829 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
15 | eqid 2728 | . . . . . 6 ⊢ (𝑅 unitVec 𝐼) = (𝑅 unitVec 𝐼) | |
16 | 15, 1, 2 | uvcff 21719 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → (𝑅 unitVec 𝐼):𝐼⟶𝐵) |
17 | 14, 7, 16 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑅 unitVec 𝐼):𝐼⟶𝐵) |
18 | 17 | frnd 6725 | . . 3 ⊢ (𝜑 → ran (𝑅 unitVec 𝐼) ⊆ 𝐵) |
19 | eqid 2728 | . . . 4 ⊢ (LSpan‘𝐹) = (LSpan‘𝐹) | |
20 | frlmup.k | . . . 4 ⊢ 𝐾 = (LSpan‘𝑇) | |
21 | 2, 19, 20 | lmhmlsp 20928 | . . 3 ⊢ ((𝐸 ∈ (𝐹 LMHom 𝑇) ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
22 | 10, 18, 21 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
23 | 2, 3 | lmhmf 20913 | . . . . . 6 ⊢ (𝐸 ∈ (𝐹 LMHom 𝑇) → 𝐸:𝐵⟶𝐶) |
24 | 10, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐸:𝐵⟶𝐶) |
25 | 24 | ffnd 6718 | . . . 4 ⊢ (𝜑 → 𝐸 Fn 𝐵) |
26 | fnima 6680 | . . . 4 ⊢ (𝐸 Fn 𝐵 → (𝐸 “ 𝐵) = ran 𝐸) | |
27 | 25, 26 | syl 17 | . . 3 ⊢ (𝜑 → (𝐸 “ 𝐵) = ran 𝐸) |
28 | eqid 2728 | . . . . . . . 8 ⊢ (LBasis‘𝐹) = (LBasis‘𝐹) | |
29 | 1, 15, 28 | frlmlbs 21725 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑋) → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
30 | 14, 7, 29 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹)) |
31 | 2, 28, 19 | lbssp 20958 | . . . . . 6 ⊢ (ran (𝑅 unitVec 𝐼) ∈ (LBasis‘𝐹) → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵) |
32 | 30, 31 | syl 17 | . . . . 5 ⊢ (𝜑 → ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)) = 𝐵) |
33 | 32 | eqcomd 2734 | . . . 4 ⊢ (𝜑 → 𝐵 = ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼))) |
34 | 33 | imaeq2d 6058 | . . 3 ⊢ (𝜑 → (𝐸 “ 𝐵) = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))) |
35 | 27, 34 | eqtr3d 2770 | . 2 ⊢ (𝜑 → ran 𝐸 = (𝐸 “ ((LSpan‘𝐹)‘ran (𝑅 unitVec 𝐼)))) |
36 | imaco 6250 | . . . 4 ⊢ ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) | |
37 | 9 | ffnd 6718 | . . . . . . 7 ⊢ (𝜑 → 𝐴 Fn 𝐼) |
38 | 17 | ffnd 6718 | . . . . . . . 8 ⊢ (𝜑 → (𝑅 unitVec 𝐼) Fn 𝐼) |
39 | fnco 6667 | . . . . . . . 8 ⊢ ((𝐸 Fn 𝐵 ∧ (𝑅 unitVec 𝐼) Fn 𝐼 ∧ ran (𝑅 unitVec 𝐼) ⊆ 𝐵) → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼) | |
40 | 25, 38, 18, 39 | syl3anc 1369 | . . . . . . 7 ⊢ (𝜑 → (𝐸 ∘ (𝑅 unitVec 𝐼)) Fn 𝐼) |
41 | fvco2 6990 | . . . . . . . . 9 ⊢ (((𝑅 unitVec 𝐼) Fn 𝐼 ∧ 𝑢 ∈ 𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢))) | |
42 | 38, 41 | sylan 579 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢) = (𝐸‘((𝑅 unitVec 𝐼)‘𝑢))) |
43 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑇 ∈ LMod) |
44 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝐼 ∈ 𝑋) |
45 | 8 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑅 = (Scalar‘𝑇)) |
46 | 9 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝐴:𝐼⟶𝐶) |
47 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → 𝑢 ∈ 𝐼) | |
48 | 1, 2, 3, 4, 5, 43, 44, 45, 46, 47, 15 | frlmup2 21727 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → (𝐸‘((𝑅 unitVec 𝐼)‘𝑢)) = (𝐴‘𝑢)) |
49 | 42, 48 | eqtr2d 2769 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐼) → (𝐴‘𝑢) = ((𝐸 ∘ (𝑅 unitVec 𝐼))‘𝑢)) |
50 | 37, 40, 49 | eqfnfvd 7038 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝐸 ∘ (𝑅 unitVec 𝐼))) |
51 | 50 | imaeq1d 6057 | . . . . 5 ⊢ (𝜑 → (𝐴 “ 𝐼) = ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼)) |
52 | fnima 6680 | . . . . . 6 ⊢ (𝐴 Fn 𝐼 → (𝐴 “ 𝐼) = ran 𝐴) | |
53 | 37, 52 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐴 “ 𝐼) = ran 𝐴) |
54 | 51, 53 | eqtr3d 2770 | . . . 4 ⊢ (𝜑 → ((𝐸 ∘ (𝑅 unitVec 𝐼)) “ 𝐼) = ran 𝐴) |
55 | fnima 6680 | . . . . . 6 ⊢ ((𝑅 unitVec 𝐼) Fn 𝐼 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼)) | |
56 | 38, 55 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑅 unitVec 𝐼) “ 𝐼) = ran (𝑅 unitVec 𝐼)) |
57 | 56 | imaeq2d 6058 | . . . 4 ⊢ (𝜑 → (𝐸 “ ((𝑅 unitVec 𝐼) “ 𝐼)) = (𝐸 “ ran (𝑅 unitVec 𝐼))) |
58 | 36, 54, 57 | 3eqtr3a 2792 | . . 3 ⊢ (𝜑 → ran 𝐴 = (𝐸 “ ran (𝑅 unitVec 𝐼))) |
59 | 58 | fveq2d 6896 | . 2 ⊢ (𝜑 → (𝐾‘ran 𝐴) = (𝐾‘(𝐸 “ ran (𝑅 unitVec 𝐼)))) |
60 | 22, 35, 59 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3945 ↦ cmpt 5226 ran crn 5674 “ cima 5676 ∘ ccom 5677 Fn wfn 6538 ⟶wf 6539 ‘cfv 6543 (class class class)co 7415 ∘f cof 7678 Basecbs 17174 Scalarcsca 17230 ·𝑠 cvsca 17231 Σg cgsu 17416 Ringcrg 20167 LModclmod 20737 LSpanclspn 20849 LMHom clmhm 20898 LBasisclbs 20953 freeLMod cfrlm 21674 unitVec cuvc 21710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-ixp 8911 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-sup 9460 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-fzo 13655 df-seq 13994 df-hash 14317 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17417 df-gsum 17418 df-prds 17423 df-pws 17425 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-submnd 18735 df-grp 18887 df-minusg 18888 df-sbg 18889 df-mulg 19018 df-subg 19072 df-ghm 19162 df-cntz 19262 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-nzr 20446 df-subrg 20502 df-lmod 20739 df-lss 20810 df-lsp 20850 df-lmhm 20901 df-lbs 20954 df-sra 21052 df-rgmod 21053 df-dsmm 21660 df-frlm 21675 df-uvc 21711 |
This theorem is referenced by: ellspd 21730 indlcim 21768 lnrfg 42534 |
Copyright terms: Public domain | W3C validator |