Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsrng01 Structured version   Visualization version   GIF version

Theorem lindsrng01 47508
Description: Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 20750), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
lindsrng01.b 𝐵 = (Base‘𝑀)
lindsrng01.r 𝑅 = (Scalar‘𝑀)
lindsrng01.e 𝐸 = (Base‘𝑅)
Assertion
Ref Expression
lindsrng01 ((𝑀 ∈ LMod ∧ ((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀)

Proof of Theorem lindsrng01
Dummy variables 𝑓 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lindsrng01.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
2 lindsrng01.e . . . . . . . . 9 𝐸 = (Base‘𝑅)
31, 2lmodsn0 20750 . . . . . . . 8 (𝑀 ∈ LMod → 𝐸 ≠ ∅)
42fvexi 6905 . . . . . . . . . 10 𝐸 ∈ V
5 hasheq0 14348 . . . . . . . . . 10 (𝐸 ∈ V → ((♯‘𝐸) = 0 ↔ 𝐸 = ∅))
64, 5ax-mp 5 . . . . . . . . 9 ((♯‘𝐸) = 0 ↔ 𝐸 = ∅)
7 eqneqall 2946 . . . . . . . . . 10 (𝐸 = ∅ → (𝐸 ≠ ∅ → 𝑆 linIndS 𝑀))
87com12 32 . . . . . . . . 9 (𝐸 ≠ ∅ → (𝐸 = ∅ → 𝑆 linIndS 𝑀))
96, 8biimtrid 241 . . . . . . . 8 (𝐸 ≠ ∅ → ((♯‘𝐸) = 0 → 𝑆 linIndS 𝑀))
103, 9syl 17 . . . . . . 7 (𝑀 ∈ LMod → ((♯‘𝐸) = 0 → 𝑆 linIndS 𝑀))
1110adantr 480 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → ((♯‘𝐸) = 0 → 𝑆 linIndS 𝑀))
1211com12 32 . . . . 5 ((♯‘𝐸) = 0 → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀))
131lmodring 20744 . . . . . . . . 9 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
1413adantr 480 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑅 ∈ Ring)
15 eqid 2727 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
162, 150ring 20456 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (♯‘𝐸) = 1) → 𝐸 = {(0g𝑅)})
1714, 16sylan 579 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → 𝐸 = {(0g𝑅)})
18 simpr 484 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 ∈ 𝒫 𝐵)
1918adantr 480 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → 𝑆 ∈ 𝒫 𝐵)
2019adantl 481 . . . . . . . 8 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → 𝑆 ∈ 𝒫 𝐵)
21 snex 5427 . . . . . . . . . . . . . 14 {(0g𝑅)} ∈ V
2219, 21jctil 519 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → ({(0g𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
2322adantl 481 . . . . . . . . . . . 12 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → ({(0g𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵))
24 elmapg 8851 . . . . . . . . . . . 12 (({(0g𝑅)} ∈ V ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑓 ∈ ({(0g𝑅)} ↑m 𝑆) ↔ 𝑓:𝑆⟶{(0g𝑅)}))
2523, 24syl 17 . . . . . . . . . . 11 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑓 ∈ ({(0g𝑅)} ↑m 𝑆) ↔ 𝑓:𝑆⟶{(0g𝑅)}))
26 fvex 6904 . . . . . . . . . . . . . 14 (0g𝑅) ∈ V
2726fconst2 7211 . . . . . . . . . . . . 13 (𝑓:𝑆⟶{(0g𝑅)} ↔ 𝑓 = (𝑆 × {(0g𝑅)}))
28 fconstmpt 5734 . . . . . . . . . . . . . 14 (𝑆 × {(0g𝑅)}) = (𝑥𝑆 ↦ (0g𝑅))
2928eqeq2i 2740 . . . . . . . . . . . . 13 (𝑓 = (𝑆 × {(0g𝑅)}) ↔ 𝑓 = (𝑥𝑆 ↦ (0g𝑅)))
3027, 29bitri 275 . . . . . . . . . . . 12 (𝑓:𝑆⟶{(0g𝑅)} ↔ 𝑓 = (𝑥𝑆 ↦ (0g𝑅)))
31 eqidd 2728 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) → (𝑥𝑆 ↦ (0g𝑅)) = (𝑥𝑆 ↦ (0g𝑅)))
32 eqidd 2728 . . . . . . . . . . . . . . . 16 ((((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) ∧ 𝑥 = 𝑣) → (0g𝑅) = (0g𝑅))
33 simpr 484 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) → 𝑣𝑆)
34 fvexd 6906 . . . . . . . . . . . . . . . 16 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) → (0g𝑅) ∈ V)
3531, 32, 33, 34fvmptd 7006 . . . . . . . . . . . . . . 15 (((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) ∧ 𝑣𝑆) → ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅))
3635ralrimiva 3141 . . . . . . . . . . . . . 14 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅))
3736a1d 25 . . . . . . . . . . . . 13 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (((𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅) ∧ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅)))
38 breq1 5145 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (𝑓 finSupp (0g𝑅) ↔ (𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅)))
39 oveq1 7421 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (𝑓( linC ‘𝑀)𝑆) = ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆))
4039eqeq1d 2729 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ↔ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀)))
4138, 40anbi12d 630 . . . . . . . . . . . . . 14 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) ↔ ((𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅) ∧ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀))))
42 fveq1 6890 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (𝑓𝑣) = ((𝑥𝑆 ↦ (0g𝑅))‘𝑣))
4342eqeq1d 2729 . . . . . . . . . . . . . . 15 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓𝑣) = (0g𝑅) ↔ ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅)))
4443ralbidv 3172 . . . . . . . . . . . . . 14 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (∀𝑣𝑆 (𝑓𝑣) = (0g𝑅) ↔ ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅)))
4541, 44imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → (((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)) ↔ (((𝑥𝑆 ↦ (0g𝑅)) finSupp (0g𝑅) ∧ ((𝑥𝑆 ↦ (0g𝑅))( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 ((𝑥𝑆 ↦ (0g𝑅))‘𝑣) = (0g𝑅))))
4637, 45syl5ibrcom 246 . . . . . . . . . . . 12 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑓 = (𝑥𝑆 ↦ (0g𝑅)) → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
4730, 46biimtrid 241 . . . . . . . . . . 11 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑓:𝑆⟶{(0g𝑅)} → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
4825, 47sylbid 239 . . . . . . . . . 10 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑓 ∈ ({(0g𝑅)} ↑m 𝑆) → ((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
4948ralrimiv 3140 . . . . . . . . 9 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → ∀𝑓 ∈ ({(0g𝑅)} ↑m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))
50 oveq1 7421 . . . . . . . . . . 11 (𝐸 = {(0g𝑅)} → (𝐸m 𝑆) = ({(0g𝑅)} ↑m 𝑆))
5150raleqdv 3320 . . . . . . . . . 10 (𝐸 = {(0g𝑅)} → (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)) ↔ ∀𝑓 ∈ ({(0g𝑅)} ↑m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
5251adantr 480 . . . . . . . . 9 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)) ↔ ∀𝑓 ∈ ({(0g𝑅)} ↑m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅))))
5349, 52mpbird 257 . . . . . . . 8 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))
54 simpl 482 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
5554ancomd 461 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod))
5655adantl 481 . . . . . . . . 9 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod))
57 lindsrng01.b . . . . . . . . . 10 𝐵 = (Base‘𝑀)
58 eqid 2727 . . . . . . . . . 10 (0g𝑀) = (0g𝑀)
5957, 58, 1, 2, 15islininds 47486 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))))
6056, 59syl 17 . . . . . . . 8 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp (0g𝑅) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑣𝑆 (𝑓𝑣) = (0g𝑅)))))
6120, 53, 60mpbir2and 712 . . . . . . 7 ((𝐸 = {(0g𝑅)} ∧ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1)) → 𝑆 linIndS 𝑀)
6217, 61mpancom 687 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (♯‘𝐸) = 1) → 𝑆 linIndS 𝑀)
6362expcom 413 . . . . 5 ((♯‘𝐸) = 1 → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀))
6412, 63jaoi 856 . . . 4 (((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) → ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀))
6564expd 415 . . 3 (((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) → (𝑀 ∈ LMod → (𝑆 ∈ 𝒫 𝐵𝑆 linIndS 𝑀)))
6665com12 32 . 2 (𝑀 ∈ LMod → (((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) → (𝑆 ∈ 𝒫 𝐵𝑆 linIndS 𝑀)))
67663imp 1109 1 ((𝑀 ∈ LMod ∧ ((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wral 3056  Vcvv 3469  c0 4318  𝒫 cpw 4598  {csn 4624   class class class wbr 5142  cmpt 5225   × cxp 5670  wf 6538  cfv 6542  (class class class)co 7414  m cmap 8838   finSupp cfsupp 9379  0cc0 11132  1c1 11133  chash 14315  Basecbs 17173  Scalarcsca 17229  0gc0g 17414  Ringcrg 20166  LModclmod 20736   linC clinc 47444   linIndS clininds 47480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-hash 14316  df-0g 17416  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-ring 20168  df-lmod 20738  df-lininds 47482
This theorem is referenced by:  lindszr  47509
  Copyright terms: Public domain W3C validator