![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fneq1 | ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeq 6567 | . . 3 ⊢ (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺)) | |
2 | dmeq 5900 | . . . 4 ⊢ (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺) | |
3 | 2 | eqeq1d 2729 | . . 3 ⊢ (𝐹 = 𝐺 → (dom 𝐹 = 𝐴 ↔ dom 𝐺 = 𝐴)) |
4 | 1, 3 | anbi12d 630 | . 2 ⊢ (𝐹 = 𝐺 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴))) |
5 | df-fn 6545 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
6 | df-fn 6545 | . 2 ⊢ (𝐺 Fn 𝐴 ↔ (Fun 𝐺 ∧ dom 𝐺 = 𝐴)) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐹 = 𝐺 → (𝐹 Fn 𝐴 ↔ 𝐺 Fn 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 dom cdm 5672 Fun wfun 6536 Fn wfn 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-fun 6544 df-fn 6545 |
This theorem is referenced by: fneq1d 6641 fneq1i 6645 fn0 6680 feq1 6697 foeq1 6801 f1ocnv 6845 dffn5 6951 mpteqb 7018 fnsnb 7169 fnprb 7214 fntpb 7215 eufnfv 7235 frrlem1 8285 frrlem13 8297 wfrlem1OLD 8322 wfrlem3OLDa 8325 wfrlem15OLD 8337 tfrlem12 8403 fsetdmprc0 8865 mapval2 8882 elixp2 8911 ixpfn 8913 elixpsn 8947 inf3lem6 9648 ssttrcl 9730 ttrcltr 9731 ttrclss 9735 ttrclselem2 9741 aceq3lem 10135 dfac4 10137 dfacacn 10156 axcc2lem 10451 axcc3 10453 seqof 14048 ccatvalfn 14555 cshword 14765 0csh0 14767 lmodfopnelem1 20770 rrgsupp 21227 elpt 23463 elptr 23464 ptcmplem3 23945 prdsxmslem2 24425 tgjustr 28265 bnj62 34287 bnj976 34344 bnj66 34427 bnj124 34438 bnj607 34483 bnj873 34491 bnj1234 34580 bnj1463 34622 fineqvac 34653 fnsnbt 41641 eqresfnbd 41643 dssmapf1od 43374 fnchoice 44314 choicefi 44496 axccdom 44518 dfafn5b 46464 rngchomffvalALTV 47263 functhinclem1 47970 |
Copyright terms: Public domain | W3C validator |