Proof of Theorem lmodfopnelem1
Step | Hyp | Ref
| Expression |
1 | | lmodfopne.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
2 | | lmodfopne.s |
. . . . 5
⊢ 𝑆 = (Scalar‘𝑊) |
3 | | lmodfopne.k |
. . . . 5
⊢ 𝐾 = (Base‘𝑆) |
4 | | lmodfopne.t |
. . . . 5
⊢ · = (
·sf ‘𝑊) |
5 | 1, 2, 3, 4 | lmodscaf 20760 |
. . . 4
⊢ (𝑊 ∈ LMod → ·
:(𝐾 × 𝑉)⟶𝑉) |
6 | 5 | ffnd 6717 |
. . 3
⊢ (𝑊 ∈ LMod → · Fn
(𝐾 × 𝑉)) |
7 | | lmodfopne.a |
. . . . 5
⊢ + =
(+𝑓‘𝑊) |
8 | 1, 7 | plusffn 18602 |
. . . 4
⊢ + Fn (𝑉 × 𝑉) |
9 | | fneq1 6639 |
. . . . . . . . . . 11
⊢ ( + = · →
( + Fn
(𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉))) |
10 | | fndmu 6655 |
. . . . . . . . . . . 12
⊢ (( · Fn
(𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉)) |
11 | 10 | ex 412 |
. . . . . . . . . . 11
⊢ ( · Fn
(𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
12 | 9, 11 | biimtrdi 252 |
. . . . . . . . . 10
⊢ ( + = · →
( + Fn
(𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
13 | 12 | com13 88 |
. . . . . . . . 9
⊢ ( · Fn
(𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
14 | 13 | impcom 407 |
. . . . . . . 8
⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
15 | 1 | lmodbn0 20747 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ LMod → 𝑉 ≠ ∅) |
16 | | xp11 6173 |
. . . . . . . . . . 11
⊢ ((𝑉 ≠ ∅ ∧ 𝑉 ≠ ∅) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) |
17 | 15, 15, 16 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) |
18 | 17 | simprbda 498 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾) |
19 | 18 | expcom 413 |
. . . . . . . 8
⊢ ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾)) |
20 | 14, 19 | syl6 35 |
. . . . . . 7
⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾))) |
21 | 20 | com23 86 |
. . . . . 6
⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾))) |
22 | 21 | ex 412 |
. . . . 5
⊢ ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)))) |
23 | 22 | com23 86 |
. . . 4
⊢ ( + Fn (𝑉 × 𝑉) → (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾)))) |
24 | 8, 23 | ax-mp 5 |
. . 3
⊢ (𝑊 ∈ LMod → ( · Fn
(𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾))) |
25 | 6, 24 | mpd 15 |
. 2
⊢ (𝑊 ∈ LMod → ( + = · →
𝑉 = 𝐾)) |
26 | 25 | imp 406 |
1
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ 𝑉 = 𝐾) |