MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfopnelem1 Structured version   Visualization version   GIF version

Theorem lmodfopnelem1 20774
Description: Lemma 1 for lmodfopne 20776. (Contributed by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t · = ( ·sf𝑊)
lmodfopne.a + = (+𝑓𝑊)
lmodfopne.v 𝑉 = (Base‘𝑊)
lmodfopne.s 𝑆 = (Scalar‘𝑊)
lmodfopne.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
lmodfopnelem1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)

Proof of Theorem lmodfopnelem1
StepHypRef Expression
1 lmodfopne.v . . . . 5 𝑉 = (Base‘𝑊)
2 lmodfopne.s . . . . 5 𝑆 = (Scalar‘𝑊)
3 lmodfopne.k . . . . 5 𝐾 = (Base‘𝑆)
4 lmodfopne.t . . . . 5 · = ( ·sf𝑊)
51, 2, 3, 4lmodscaf 20760 . . . 4 (𝑊 ∈ LMod → · :(𝐾 × 𝑉)⟶𝑉)
65ffnd 6717 . . 3 (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉))
7 lmodfopne.a . . . . 5 + = (+𝑓𝑊)
81, 7plusffn 18602 . . . 4 + Fn (𝑉 × 𝑉)
9 fneq1 6639 . . . . . . . . . . 11 ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉)))
10 fndmu 6655 . . . . . . . . . . . 12 (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉))
1110ex 412 . . . . . . . . . . 11 ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
129, 11biimtrdi 252 . . . . . . . . . 10 ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1312com13 88 . . . . . . . . 9 ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1413impcom 407 . . . . . . . 8 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
151lmodbn0 20747 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑉 ≠ ∅)
16 xp11 6173 . . . . . . . . . . 11 ((𝑉 ≠ ∅ ∧ 𝑉 ≠ ∅) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
1715, 15, 16syl2anc 583 . . . . . . . . . 10 (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
1817simprbda 498 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾)
1918expcom 413 . . . . . . . 8 ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾))
2014, 19syl6 35 . . . . . . 7 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾)))
2120com23 86 . . . . . 6 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾)))
2221ex 412 . . . . 5 ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))))
2322com23 86 . . . 4 ( + Fn (𝑉 × 𝑉) → (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = ·𝑉 = 𝐾))))
248, 23ax-mp 5 . . 3 (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = ·𝑉 = 𝐾)))
256, 24mpd 15 . 2 (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))
2625imp 406 1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2935  c0 4318   × cxp 5670   Fn wfn 6537  cfv 6542  Basecbs 17173  Scalarcsca 17229  +𝑓cplusf 18590  LModclmod 20736   ·sf cscaf 20737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-0g 17416  df-plusf 18592  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-lmod 20738  df-scaf 20739
This theorem is referenced by:  lmodfopnelem2  20775
  Copyright terms: Public domain W3C validator