MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isarep2 Structured version   Visualization version   GIF version

Theorem isarep2 6638
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature "[ i, [ i, i ] => o ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 6635. (Contributed by NM, 26-Oct-2006.)
Hypotheses
Ref Expression
isarep2.1 𝐴 ∈ V
isarep2.2 𝑥𝐴𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)
Assertion
Ref Expression
isarep2 𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝑦,𝑧   𝜑,𝑤   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑧)

Proof of Theorem isarep2
StepHypRef Expression
1 resima 6013 . . . 4 (({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
2 resopab 6032 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
32imaeq1i 6054 . . . 4 (({⟨𝑥, 𝑦⟩ ∣ 𝜑} ↾ 𝐴) “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴)
41, 3eqtr3i 2757 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴)
5 funopab 6582 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
6 isarep2.2 . . . . . . . 8 𝑥𝐴𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧)
76rspec 3242 . . . . . . 7 (𝑥𝐴 → ∀𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧))
8 nfv 1910 . . . . . . . 8 𝑧𝜑
98mo3 2553 . . . . . . 7 (∃*𝑦𝜑 ↔ ∀𝑦𝑧((𝜑 ∧ [𝑧 / 𝑦]𝜑) → 𝑦 = 𝑧))
107, 9sylibr 233 . . . . . 6 (𝑥𝐴 → ∃*𝑦𝜑)
11 moanimv 2610 . . . . . 6 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
1210, 11mpbir 230 . . . . 5 ∃*𝑦(𝑥𝐴𝜑)
135, 12mpgbir 1794 . . . 4 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
14 isarep2.1 . . . . 5 𝐴 ∈ V
1514funimaex 6635 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴) ∈ V)
1613, 15ax-mp 5 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} “ 𝐴) ∈ V
174, 16eqeltri 2824 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) ∈ V
1817isseti 3485 1 𝑤 𝑤 = ({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1532   = wceq 1534  wex 1774  [wsb 2060  wcel 2099  ∃*wmo 2527  wral 3056  Vcvv 3469  {copab 5204  cres 5674  cima 5675  Fun wfun 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-fun 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator