![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqresfnbd | Structured version Visualization version GIF version |
Description: Property of being the restriction of a function. Note that this is closer to funssres 6591 than fnssres 6672. (Contributed by SN, 11-Mar-2025.) |
Ref | Expression |
---|---|
eqresfnbd.g | ⊢ (𝜑 → 𝐹 Fn 𝐵) |
eqresfnbd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
eqresfnbd | ⊢ (𝜑 → (𝑅 = (𝐹 ↾ 𝐴) ↔ (𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqresfnbd.g | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐵) | |
2 | eqresfnbd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | fnssresd 6673 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) Fn 𝐴) |
4 | resss 6004 | . . . 4 ⊢ (𝐹 ↾ 𝐴) ⊆ 𝐹 | |
5 | 3, 4 | jctir 520 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ (𝐹 ↾ 𝐴) ⊆ 𝐹)) |
6 | fneq1 6639 | . . . 4 ⊢ (𝑅 = (𝐹 ↾ 𝐴) → (𝑅 Fn 𝐴 ↔ (𝐹 ↾ 𝐴) Fn 𝐴)) | |
7 | sseq1 4003 | . . . 4 ⊢ (𝑅 = (𝐹 ↾ 𝐴) → (𝑅 ⊆ 𝐹 ↔ (𝐹 ↾ 𝐴) ⊆ 𝐹)) | |
8 | 6, 7 | anbi12d 630 | . . 3 ⊢ (𝑅 = (𝐹 ↾ 𝐴) → ((𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹) ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ (𝐹 ↾ 𝐴) ⊆ 𝐹))) |
9 | 5, 8 | syl5ibrcom 246 | . 2 ⊢ (𝜑 → (𝑅 = (𝐹 ↾ 𝐴) → (𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹))) |
10 | 1 | fnfund 6649 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → Fun 𝐹) |
12 | funssres 6591 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ 𝑅 ⊆ 𝐹) → (𝐹 ↾ dom 𝑅) = 𝑅) | |
13 | 12 | eqcomd 2733 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑅 ⊆ 𝐹) → 𝑅 = (𝐹 ↾ dom 𝑅)) |
14 | fndm 6651 | . . . . . . . 8 ⊢ (𝑅 Fn 𝐴 → dom 𝑅 = 𝐴) | |
15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → dom 𝑅 = 𝐴) |
16 | 15 | reseq2d 5979 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → (𝐹 ↾ dom 𝑅) = (𝐹 ↾ 𝐴)) |
17 | 16 | eqeq2d 2738 | . . . . 5 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → (𝑅 = (𝐹 ↾ dom 𝑅) ↔ 𝑅 = (𝐹 ↾ 𝐴))) |
18 | 13, 17 | imbitrid 243 | . . . 4 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → ((Fun 𝐹 ∧ 𝑅 ⊆ 𝐹) → 𝑅 = (𝐹 ↾ 𝐴))) |
19 | 11, 18 | mpand 694 | . . 3 ⊢ ((𝜑 ∧ 𝑅 Fn 𝐴) → (𝑅 ⊆ 𝐹 → 𝑅 = (𝐹 ↾ 𝐴))) |
20 | 19 | expimpd 453 | . 2 ⊢ (𝜑 → ((𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹) → 𝑅 = (𝐹 ↾ 𝐴))) |
21 | 9, 20 | impbid 211 | 1 ⊢ (𝜑 → (𝑅 = (𝐹 ↾ 𝐴) ↔ (𝑅 Fn 𝐴 ∧ 𝑅 ⊆ 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ⊆ wss 3944 dom cdm 5672 ↾ cres 5674 Fun wfun 6536 Fn wfn 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-fun 6544 df-fn 6545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |