![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqwrd | Structured version Visualization version GIF version |
Description: Two words are equal iff they have the same length and the same symbol at each position. (Contributed by AV, 13-Apr-2018.) (Revised by JJ, 30-Dec-2023.) |
Ref | Expression |
---|---|
eqwrd | ⊢ ((𝑈 ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑇) → (𝑈 = 𝑊 ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdfn 14504 | . . 3 ⊢ (𝑈 ∈ Word 𝑆 → 𝑈 Fn (0..^(♯‘𝑈))) | |
2 | wrdfn 14504 | . . 3 ⊢ (𝑊 ∈ Word 𝑇 → 𝑊 Fn (0..^(♯‘𝑊))) | |
3 | eqfnfv2 7035 | . . 3 ⊢ ((𝑈 Fn (0..^(♯‘𝑈)) ∧ 𝑊 Fn (0..^(♯‘𝑊))) → (𝑈 = 𝑊 ↔ ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝑈 ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑇) → (𝑈 = 𝑊 ↔ ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) |
5 | fveq2 6891 | . . . . 5 ⊢ ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) → (♯‘(0..^(♯‘𝑈))) = (♯‘(0..^(♯‘𝑊)))) | |
6 | lencl 14509 | . . . . . . 7 ⊢ (𝑈 ∈ Word 𝑆 → (♯‘𝑈) ∈ ℕ0) | |
7 | hashfzo0 14415 | . . . . . . 7 ⊢ ((♯‘𝑈) ∈ ℕ0 → (♯‘(0..^(♯‘𝑈))) = (♯‘𝑈)) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝑈 ∈ Word 𝑆 → (♯‘(0..^(♯‘𝑈))) = (♯‘𝑈)) |
9 | lencl 14509 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑇 → (♯‘𝑊) ∈ ℕ0) | |
10 | hashfzo0 14415 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑇 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) |
12 | 8, 11 | eqeqan12d 2741 | . . . . 5 ⊢ ((𝑈 ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑇) → ((♯‘(0..^(♯‘𝑈))) = (♯‘(0..^(♯‘𝑊))) ↔ (♯‘𝑈) = (♯‘𝑊))) |
13 | 5, 12 | imbitrid 243 | . . . 4 ⊢ ((𝑈 ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑇) → ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) → (♯‘𝑈) = (♯‘𝑊))) |
14 | oveq2 7422 | . . . 4 ⊢ ((♯‘𝑈) = (♯‘𝑊) → (0..^(♯‘𝑈)) = (0..^(♯‘𝑊))) | |
15 | 13, 14 | impbid1 224 | . . 3 ⊢ ((𝑈 ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑇) → ((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) ↔ (♯‘𝑈) = (♯‘𝑊))) |
16 | 15 | anbi1d 629 | . 2 ⊢ ((𝑈 ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑇) → (((0..^(♯‘𝑈)) = (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)) ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) |
17 | 4, 16 | bitrd 279 | 1 ⊢ ((𝑈 ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑇) → (𝑈 = 𝑊 ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 Fn wfn 6537 ‘cfv 6542 (class class class)co 7414 0cc0 11132 ℕ0cn0 12496 ..^cfzo 13653 ♯chash 14315 Word cword 14490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-hash 14316 df-word 14491 |
This theorem is referenced by: eqs1 14588 swrdspsleq 14641 pfxeq 14672 pfxsuffeqwrdeq 14674 repswpfx 14761 2cshw 14789 pfx2 14924 wwlktovf1 14934 eqwrds3 14938 wlkeq 29441 wwlkseq 29695 |
Copyright terms: Public domain | W3C validator |