MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkeq Structured version   Visualization version   GIF version

Theorem wlkeq 29435
Description: Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.)
Assertion
Ref Expression
wlkeq ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem wlkeq
StepHypRef Expression
1 eqid 2727 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2727 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
3 eqid 2727 . . . . . . 7 (1st𝐴) = (1st𝐴)
4 eqid 2727 . . . . . . 7 (2nd𝐴) = (2nd𝐴)
51, 2, 3, 4wlkelwrd 29434 . . . . . 6 (𝐴 ∈ (Walks‘𝐺) → ((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)))
6 eqid 2727 . . . . . . 7 (1st𝐵) = (1st𝐵)
7 eqid 2727 . . . . . . 7 (2nd𝐵) = (2nd𝐵)
81, 2, 6, 7wlkelwrd 29434 . . . . . 6 (𝐵 ∈ (Walks‘𝐺) → ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)))
95, 8anim12i 612 . . . . 5 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))))
10 wlkop 29429 . . . . . . 7 (𝐴 ∈ (Walks‘𝐺) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
11 eleq1 2816 . . . . . . . 8 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ (Walks‘𝐺) ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ (Walks‘𝐺)))
12 df-br 5143 . . . . . . . . 9 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) ↔ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ (Walks‘𝐺))
13 wlklenvm1 29423 . . . . . . . . 9 ((1st𝐴)(Walks‘𝐺)(2nd𝐴) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
1412, 13sylbir 234 . . . . . . . 8 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ (Walks‘𝐺) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
1511, 14biimtrdi 252 . . . . . . 7 (𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩ → (𝐴 ∈ (Walks‘𝐺) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1)))
1610, 15mpcom 38 . . . . . 6 (𝐴 ∈ (Walks‘𝐺) → (♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1))
17 wlkop 29429 . . . . . . 7 (𝐵 ∈ (Walks‘𝐺) → 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
18 eleq1 2816 . . . . . . . 8 (𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩ → (𝐵 ∈ (Walks‘𝐺) ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ (Walks‘𝐺)))
19 df-br 5143 . . . . . . . . 9 ((1st𝐵)(Walks‘𝐺)(2nd𝐵) ↔ ⟨(1st𝐵), (2nd𝐵)⟩ ∈ (Walks‘𝐺))
20 wlklenvm1 29423 . . . . . . . . 9 ((1st𝐵)(Walks‘𝐺)(2nd𝐵) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
2119, 20sylbir 234 . . . . . . . 8 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ (Walks‘𝐺) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
2218, 21biimtrdi 252 . . . . . . 7 (𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩ → (𝐵 ∈ (Walks‘𝐺) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1)))
2317, 22mpcom 38 . . . . . 6 (𝐵 ∈ (Walks‘𝐺) → (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))
2416, 23anim12i 612 . . . . 5 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1)))
25 eqwrd 14531 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (1st𝐵) ∈ Word dom (iEdg‘𝐺)) → ((1st𝐴) = (1st𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
2625ad2ant2r 746 . . . . . . 7 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) → ((1st𝐴) = (1st𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
2726adantr 480 . . . . . 6 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))) → ((1st𝐴) = (1st𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
28 lencl 14507 . . . . . . . . 9 ((1st𝐴) ∈ Word dom (iEdg‘𝐺) → (♯‘(1st𝐴)) ∈ ℕ0)
2928adantr 480 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) → (♯‘(1st𝐴)) ∈ ℕ0)
30 simpr 484 . . . . . . . 8 (((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) → (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺))
31 simpr 484 . . . . . . . 8 (((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))
32 2ffzeq 13646 . . . . . . . 8 (((♯‘(1st𝐴)) ∈ ℕ0 ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺)) → ((2nd𝐴) = (2nd𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
3329, 30, 31, 32syl2an3an 1420 . . . . . . 7 ((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) → ((2nd𝐴) = (2nd𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
3433adantr 480 . . . . . 6 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))) → ((2nd𝐴) = (2nd𝐵) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
3527, 34anbi12d 630 . . . . 5 (((((1st𝐴) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐴):(0...(♯‘(1st𝐴)))⟶(Vtx‘𝐺)) ∧ ((1st𝐵) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝐵):(0...(♯‘(1st𝐵)))⟶(Vtx‘𝐺))) ∧ ((♯‘(1st𝐴)) = ((♯‘(2nd𝐴)) − 1) ∧ (♯‘(1st𝐵)) = ((♯‘(2nd𝐵)) − 1))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
369, 24, 35syl2anc 583 . . . 4 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
37363adant3 1130 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
38 eqeq1 2731 . . . . . . 7 (𝑁 = (♯‘(1st𝐴)) → (𝑁 = (♯‘(1st𝐵)) ↔ (♯‘(1st𝐴)) = (♯‘(1st𝐵))))
39 oveq2 7422 . . . . . . . 8 (𝑁 = (♯‘(1st𝐴)) → (0..^𝑁) = (0..^(♯‘(1st𝐴))))
4039raleqdv 3320 . . . . . . 7 (𝑁 = (♯‘(1st𝐴)) → (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ↔ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)))
4138, 40anbi12d 630 . . . . . 6 (𝑁 = (♯‘(1st𝐴)) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥))))
42 oveq2 7422 . . . . . . . 8 (𝑁 = (♯‘(1st𝐴)) → (0...𝑁) = (0...(♯‘(1st𝐴))))
4342raleqdv 3320 . . . . . . 7 (𝑁 = (♯‘(1st𝐴)) → (∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥) ↔ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))
4438, 43anbi12d 630 . . . . . 6 (𝑁 = (♯‘(1st𝐴)) → ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)) ↔ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
4541, 44anbi12d 630 . . . . 5 (𝑁 = (♯‘(1st𝐴)) → (((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
4645bibi2d 342 . . . 4 (𝑁 = (♯‘(1st𝐴)) → ((((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))) ↔ (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))))
47463ad2ant3 1133 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → ((((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))) ↔ (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ (((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^(♯‘(1st𝐴)))((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ ((♯‘(1st𝐴)) = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...(♯‘(1st𝐴)))((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))))
4837, 47mpbird 257 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))))
49 1st2ndb 8027 . . . . 5 (𝐴 ∈ (V × V) ↔ 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
5010, 49sylibr 233 . . . 4 (𝐴 ∈ (Walks‘𝐺) → 𝐴 ∈ (V × V))
51 1st2ndb 8027 . . . . 5 (𝐵 ∈ (V × V) ↔ 𝐵 = ⟨(1st𝐵), (2nd𝐵)⟩)
5217, 51sylibr 233 . . . 4 (𝐵 ∈ (Walks‘𝐺) → 𝐵 ∈ (V × V))
53 xpopth 8028 . . . 4 ((𝐴 ∈ (V × V) ∧ 𝐵 ∈ (V × V)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
5450, 52, 53syl2an 595 . . 3 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
55543adant3 1130 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((1st𝐴) = (1st𝐵) ∧ (2nd𝐴) = (2nd𝐵)) ↔ 𝐴 = 𝐵))
56 3anass 1093 . . . 4 ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)) ↔ (𝑁 = (♯‘(1st𝐵)) ∧ (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
57 anandi 675 . . . 4 ((𝑁 = (♯‘(1st𝐵)) ∧ (∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ ((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
5856, 57bitr2i 276 . . 3 (((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥)))
5958a1i 11 . 2 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (((𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥)) ∧ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))) ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
6048, 55, 593bitr3d 309 1 ((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (♯‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  Vcvv 3469  cop 4630   class class class wbr 5142   × cxp 5670  dom cdm 5672  wf 6538  cfv 6542  (class class class)co 7414  1st c1st 7985  2nd c2nd 7986  0cc0 11130  1c1 11131  cmin 11466  0cn0 12494  ...cfz 13508  ..^cfzo 13651  chash 14313  Word cword 14488  Vtxcvtx 28796  iEdgciedg 28797  Walkscwlks 29397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509  df-fzo 13652  df-hash 14314  df-word 14489  df-wlks 29400
This theorem is referenced by:  uspgr2wlkeq  29447
  Copyright terms: Public domain W3C validator