![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkop | Structured version Visualization version GIF version |
Description: A walk is an ordered pair. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
Ref | Expression |
---|---|
wlkop | ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relwlk 29439 | . 2 ⊢ Rel (Walks‘𝐺) | |
2 | 1st2nd 8043 | . 2 ⊢ ((Rel (Walks‘𝐺) ∧ 𝑊 ∈ (Walks‘𝐺)) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 〈cop 4635 Rel wrel 5683 ‘cfv 6548 1st c1st 7991 2nd c2nd 7992 Walkscwlks 29409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fv 6556 df-1st 7993 df-2nd 7994 df-wlks 29412 |
This theorem is referenced by: wlkcpr 29442 wlkeq 29447 clwlkcompbp 29595 clwlkclwwlkflem 29813 wlkl0 30176 |
Copyright terms: Public domain | W3C validator |