![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elovmpowrd | Structured version Visualization version GIF version |
Description: Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and 𝑦. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
elovmpowrd.o | ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) |
Ref | Expression |
---|---|
elovmpowrd | ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpowrd.o | . . . 4 ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) | |
2 | csbwrdg 14518 | . . . . . . . 8 ⊢ (𝑣 ∈ V → ⦋𝑣 / 𝑥⦌Word 𝑥 = Word 𝑣) | |
3 | 2 | eqcomd 2733 | . . . . . . 7 ⊢ (𝑣 ∈ V → Word 𝑣 = ⦋𝑣 / 𝑥⦌Word 𝑥) |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑣 ∈ V ∧ 𝑦 ∈ V) → Word 𝑣 = ⦋𝑣 / 𝑥⦌Word 𝑥) |
5 | 4 | rabeqdv 3442 | . . . . 5 ⊢ ((𝑣 ∈ V ∧ 𝑦 ∈ V) → {𝑧 ∈ Word 𝑣 ∣ 𝜑} = {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
6 | 5 | mpoeq3ia 7492 | . . . 4 ⊢ (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
7 | 1, 6 | eqtri 2755 | . . 3 ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ ⦋𝑣 / 𝑥⦌Word 𝑥 ∣ 𝜑}) |
8 | csbwrdg 14518 | . . . . 5 ⊢ (𝑉 ∈ V → ⦋𝑉 / 𝑥⦌Word 𝑥 = Word 𝑉) | |
9 | wrdexg 14498 | . . . . 5 ⊢ (𝑉 ∈ V → Word 𝑉 ∈ V) | |
10 | 8, 9 | eqeltrd 2828 | . . . 4 ⊢ (𝑉 ∈ V → ⦋𝑉 / 𝑥⦌Word 𝑥 ∈ V) |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → ⦋𝑉 / 𝑥⦌Word 𝑥 ∈ V) |
12 | 7, 11 | elovmporab1w 7662 | . 2 ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥)) |
13 | 8 | eleq2d 2814 | . . . . 5 ⊢ (𝑉 ∈ V → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 ↔ 𝑍 ∈ Word 𝑉)) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 ↔ 𝑍 ∈ Word 𝑉)) |
15 | id 22 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) | |
16 | 15 | 3expia 1119 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ Word 𝑉 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))) |
17 | 14, 16 | sylbid 239 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V) → (𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥 → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))) |
18 | 17 | 3impia 1115 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ ⦋𝑉 / 𝑥⦌Word 𝑥) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
19 | 12, 18 | syl 17 | 1 ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 {crab 3427 Vcvv 3469 ⦋csb 3889 (class class class)co 7414 ∈ cmpo 7416 Word cword 14488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-1cn 11188 ax-addcl 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-map 8838 df-nn 12235 df-n0 12495 df-word 14489 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |