MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnres Structured version   Visualization version   GIF version

Theorem dvnres 25854
Description: Multiple derivative version of dvres3a 25836. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnres (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑁 ∈ ℕ0) ∧ dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))

Proof of Theorem dvnres
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . . . . . 9 (𝑥 = 0 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘0))
21dmeqd 5902 . . . . . . . 8 (𝑥 = 0 → dom ((ℂ D𝑛 𝐹)‘𝑥) = dom ((ℂ D𝑛 𝐹)‘0))
32eqeq1d 2729 . . . . . . 7 (𝑥 = 0 → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 ↔ dom ((ℂ D𝑛 𝐹)‘0) = dom 𝐹))
4 fveq2 6891 . . . . . . . 8 (𝑥 = 0 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = ((𝑆 D𝑛 (𝐹𝑆))‘0))
51reseq1d 5978 . . . . . . . 8 (𝑥 = 0 → (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) = (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆))
64, 5eqeq12d 2743 . . . . . . 7 (𝑥 = 0 → (((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) ↔ ((𝑆 D𝑛 (𝐹𝑆))‘0) = (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆)))
73, 6imbi12d 344 . . . . . 6 (𝑥 = 0 → ((dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆)) ↔ (dom ((ℂ D𝑛 𝐹)‘0) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘0) = (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆))))
87imbi2d 340 . . . . 5 (𝑥 = 0 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆))) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘0) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘0) = (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆)))))
9 fveq2 6891 . . . . . . . . 9 (𝑥 = 𝑛 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘𝑛))
109dmeqd 5902 . . . . . . . 8 (𝑥 = 𝑛 → dom ((ℂ D𝑛 𝐹)‘𝑥) = dom ((ℂ D𝑛 𝐹)‘𝑛))
1110eqeq1d 2729 . . . . . . 7 (𝑥 = 𝑛 → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 ↔ dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹))
12 fveq2 6891 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = ((𝑆 D𝑛 (𝐹𝑆))‘𝑛))
139reseq1d 5978 . . . . . . . 8 (𝑥 = 𝑛 → (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆))
1412, 13eqeq12d 2743 . . . . . . 7 (𝑥 = 𝑛 → (((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) ↔ ((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)))
1511, 14imbi12d 344 . . . . . 6 (𝑥 = 𝑛 → ((dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆)) ↔ (dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆))))
1615imbi2d 340 . . . . 5 (𝑥 = 𝑛 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆))) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)))))
17 fveq2 6891 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘(𝑛 + 1)))
1817dmeqd 5902 . . . . . . . 8 (𝑥 = (𝑛 + 1) → dom ((ℂ D𝑛 𝐹)‘𝑥) = dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)))
1918eqeq1d 2729 . . . . . . 7 (𝑥 = (𝑛 + 1) → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 ↔ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹))
20 fveq2 6891 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)))
2117reseq1d 5978 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆))
2220, 21eqeq12d 2743 . . . . . . 7 (𝑥 = (𝑛 + 1) → (((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) ↔ ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆)))
2319, 22imbi12d 344 . . . . . 6 (𝑥 = (𝑛 + 1) → ((dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆)) ↔ (dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆))))
2423imbi2d 340 . . . . 5 (𝑥 = (𝑛 + 1) → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆))) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆)))))
25 fveq2 6891 . . . . . . . . 9 (𝑥 = 𝑁 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘𝑁))
2625dmeqd 5902 . . . . . . . 8 (𝑥 = 𝑁 → dom ((ℂ D𝑛 𝐹)‘𝑥) = dom ((ℂ D𝑛 𝐹)‘𝑁))
2726eqeq1d 2729 . . . . . . 7 (𝑥 = 𝑁 → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 ↔ dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹))
28 fveq2 6891 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = ((𝑆 D𝑛 (𝐹𝑆))‘𝑁))
2925reseq1d 5978 . . . . . . . 8 (𝑥 = 𝑁 → (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
3028, 29eqeq12d 2743 . . . . . . 7 (𝑥 = 𝑁 → (((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆) ↔ ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆)))
3127, 30imbi12d 344 . . . . . 6 (𝑥 = 𝑁 → ((dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆)) ↔ (dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))))
3231imbi2d 340 . . . . 5 (𝑥 = 𝑁 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑥) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑥) = (((ℂ D𝑛 𝐹)‘𝑥) ↾ 𝑆))) ↔ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆)))))
33 recnprss 25826 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3433adantr 480 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → 𝑆 ⊆ ℂ)
35 pmresg 8882 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (𝐹𝑆) ∈ (ℂ ↑pm 𝑆))
36 dvn0 25847 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ (𝐹𝑆) ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 (𝐹𝑆))‘0) = (𝐹𝑆))
3734, 35, 36syl2anc 583 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → ((𝑆 D𝑛 (𝐹𝑆))‘0) = (𝐹𝑆))
38 ssidd 4001 . . . . . . . . 9 (𝑆 ∈ {ℝ, ℂ} → ℂ ⊆ ℂ)
39 dvn0 25847 . . . . . . . . 9 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 𝐹)‘0) = 𝐹)
4038, 39sylan 579 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 𝐹)‘0) = 𝐹)
4140reseq1d 5978 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆) = (𝐹𝑆))
4237, 41eqtr4d 2770 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → ((𝑆 D𝑛 (𝐹𝑆))‘0) = (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆))
4342a1d 25 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘0) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘0) = (((ℂ D𝑛 𝐹)‘0) ↾ 𝑆)))
44 cnelprrecn 11225 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
45 simplr 768 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → 𝐹 ∈ (ℂ ↑pm ℂ))
46 simprl 770 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → 𝑛 ∈ ℕ0)
47 dvnbss 25851 . . . . . . . . . 10 ((ℂ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → dom ((ℂ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
4844, 45, 46, 47mp3an2i 1463 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘𝑛) ⊆ dom 𝐹)
49 simprr 772 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)
50 ssidd 4001 . . . . . . . . . . . . 13 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → ℂ ⊆ ℂ)
51 dvnp1 25848 . . . . . . . . . . . . 13 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)))
5250, 45, 46, 51syl3anc 1369 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)))
5352dmeqd 5902 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)))
5449, 53eqtr3d 2769 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom 𝐹 = dom (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)))
55 dvnf 25850 . . . . . . . . . . . 12 ((ℂ ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑛):dom ((ℂ D𝑛 𝐹)‘𝑛)⟶ℂ)
5644, 45, 46, 55mp3an2i 1463 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → ((ℂ D𝑛 𝐹)‘𝑛):dom ((ℂ D𝑛 𝐹)‘𝑛)⟶ℂ)
57 cnex 11213 . . . . . . . . . . . . . . 15 ℂ ∈ V
5857, 57elpm2 8886 . . . . . . . . . . . . . 14 (𝐹 ∈ (ℂ ↑pm ℂ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ))
5958simprbi 496 . . . . . . . . . . . . 13 (𝐹 ∈ (ℂ ↑pm ℂ) → dom 𝐹 ⊆ ℂ)
6045, 59syl 17 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom 𝐹 ⊆ ℂ)
6148, 60sstrd 3988 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘𝑛) ⊆ ℂ)
6250, 56, 61dvbss 25823 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ⊆ dom ((ℂ D𝑛 𝐹)‘𝑛))
6354, 62eqsstrd 4016 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom 𝐹 ⊆ dom ((ℂ D𝑛 𝐹)‘𝑛))
6448, 63eqssd 3995 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹)
6564expr 456 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ 𝑛 ∈ ℕ0) → (dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹 → dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹))
6665imim1d 82 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ 𝑛 ∈ ℕ0) → ((dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)) → (dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆))))
67 oveq2 7422 . . . . . . 7 (((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆) → (𝑆 D ((𝑆 D𝑛 (𝐹𝑆))‘𝑛)) = (𝑆 D (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)))
6834adantr 480 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → 𝑆 ⊆ ℂ)
6935adantr 480 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (𝐹𝑆) ∈ (ℂ ↑pm 𝑆))
70 dvnp1 25848 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ (𝐹𝑆) ∈ (ℂ ↑pm 𝑆) ∧ 𝑛 ∈ ℕ0) → ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝐹𝑆))‘𝑛)))
7168, 69, 46, 70syl3anc 1369 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (𝑆 D ((𝑆 D𝑛 (𝐹𝑆))‘𝑛)))
7252reseq1d 5978 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆) = ((ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ↾ 𝑆))
73 simpll 766 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → 𝑆 ∈ {ℝ, ℂ})
74 eqid 2727 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7574cnfldtop 24693 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ Top
76 unicntop 24695 . . . . . . . . . . . . . 14 ℂ = (TopOpen‘ℂfld)
7776ntrss2 22954 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ dom ((ℂ D𝑛 𝐹)‘𝑛) ⊆ ℂ) → ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)) ⊆ dom ((ℂ D𝑛 𝐹)‘𝑛))
7875, 61, 77sylancr 586 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)) ⊆ dom ((ℂ D𝑛 𝐹)‘𝑛))
7974cnfldtopon 24692 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
8079toponrestid 22816 . . . . . . . . . . . . . . 15 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
8150, 56, 61, 80, 74dvbssntr 25822 . . . . . . . . . . . . . 14 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ⊆ ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)))
8254, 81eqsstrd 4016 . . . . . . . . . . . . 13 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom 𝐹 ⊆ ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)))
8348, 82sstrd 3988 . . . . . . . . . . . 12 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘𝑛) ⊆ ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)))
8478, 83eqssd 3995 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)) = dom ((ℂ D𝑛 𝐹)‘𝑛))
8576isopn3 22963 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ dom ((ℂ D𝑛 𝐹)‘𝑛) ⊆ ℂ) → (dom ((ℂ D𝑛 𝐹)‘𝑛) ∈ (TopOpen‘ℂfld) ↔ ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)) = dom ((ℂ D𝑛 𝐹)‘𝑛)))
8675, 61, 85sylancr 586 . . . . . . . . . . 11 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (dom ((ℂ D𝑛 𝐹)‘𝑛) ∈ (TopOpen‘ℂfld) ↔ ((int‘(TopOpen‘ℂfld))‘dom ((ℂ D𝑛 𝐹)‘𝑛)) = dom ((ℂ D𝑛 𝐹)‘𝑛)))
8784, 86mpbird 257 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom ((ℂ D𝑛 𝐹)‘𝑛) ∈ (TopOpen‘ℂfld))
8864, 54eqtr2d 2768 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → dom (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) = dom ((ℂ D𝑛 𝐹)‘𝑛))
8974dvres3a 25836 . . . . . . . . . 10 (((𝑆 ∈ {ℝ, ℂ} ∧ ((ℂ D𝑛 𝐹)‘𝑛):dom ((ℂ D𝑛 𝐹)‘𝑛)⟶ℂ) ∧ (dom ((ℂ D𝑛 𝐹)‘𝑛) ∈ (TopOpen‘ℂfld) ∧ dom (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) = dom ((ℂ D𝑛 𝐹)‘𝑛))) → (𝑆 D (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)) = ((ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ↾ 𝑆))
9073, 56, 87, 88, 89syl22anc 838 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (𝑆 D (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)) = ((ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ↾ 𝑆))
9172, 90eqtr4d 2770 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆) = (𝑆 D (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆)))
9271, 91eqeq12d 2743 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆) ↔ (𝑆 D ((𝑆 D𝑛 (𝐹𝑆))‘𝑛)) = (𝑆 D (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆))))
9367, 92imbitrrid 245 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) ∧ (𝑛 ∈ ℕ0 ∧ dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹)) → (((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆) → ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆)))
9466, 93animpimp2impd 845 . . . . 5 (𝑛 ∈ ℕ0 → (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑛) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑛) = (((ℂ D𝑛 𝐹)‘𝑛) ↾ 𝑆))) → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘(𝑛 + 1)) = (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ↾ 𝑆)))))
958, 16, 24, 32, 43, 94nn0ind 12681 . . . 4 (𝑁 ∈ ℕ0 → ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))))
9695com12 32 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → (𝑁 ∈ ℕ0 → (dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))))
97963impia 1115 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑁 ∈ ℕ0) → (dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹 → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆)))
9897imp 406 1 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑁 ∈ ℕ0) ∧ dom ((ℂ D𝑛 𝐹)‘𝑁) = dom 𝐹) → ((𝑆 D𝑛 (𝐹𝑆))‘𝑁) = (((ℂ D𝑛 𝐹)‘𝑁) ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wss 3944  {cpr 4626  dom cdm 5672  cres 5674  wf 6538  cfv 6542  (class class class)co 7414  pm cpm 8839  cc 11130  cr 11131  0cc0 11132  1c1 11133   + caddc 11135  0cn0 12496  TopOpenctopn 17396  fldccnfld 21272  Topctop 22788  intcnt 22914   D cdv 25785   D𝑛 cdvn 25786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-icc 13357  df-fz 13511  df-seq 13993  df-exp 14053  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17109  df-slot 17144  df-ndx 17156  df-base 17174  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-rest 17397  df-topn 17398  df-topgen 17418  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-lp 23033  df-perf 23034  df-cnp 23125  df-haus 23212  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-limc 25788  df-dv 25789  df-dvn 25790
This theorem is referenced by:  cpnres  25860
  Copyright terms: Public domain W3C validator