![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recnprss | Structured version Visualization version GIF version |
Description: Both ℝ and ℂ are subsets of ℂ. (Contributed by Mario Carneiro, 10-Feb-2015.) |
Ref | Expression |
---|---|
recnprss | ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4646 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
2 | ax-resscn 11187 | . . . 4 ⊢ ℝ ⊆ ℂ | |
3 | sseq1 4003 | . . . 4 ⊢ (𝑆 = ℝ → (𝑆 ⊆ ℂ ↔ ℝ ⊆ ℂ)) | |
4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (𝑆 = ℝ → 𝑆 ⊆ ℂ) |
5 | eqimss 4036 | . . 3 ⊢ (𝑆 = ℂ → 𝑆 ⊆ ℂ) | |
6 | 4, 5 | jaoi 856 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → 𝑆 ⊆ ℂ) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 {cpr 4626 ℂcc 11128 ℝcr 11129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-resscn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-un 3949 df-in 3951 df-ss 3961 df-sn 4625 df-pr 4627 |
This theorem is referenced by: dvres3 25829 dvres3a 25830 dvcnp 25835 dvnff 25840 dvnadd 25846 dvnres 25848 cpnord 25852 cpncn 25853 cpnres 25854 dvadd 25858 dvmul 25859 dvaddf 25860 dvmulf 25861 dvcmul 25862 dvcmulf 25863 dvco 25866 dvcof 25867 dvmptid 25876 dvmptc 25877 dvmptres2 25881 dvmptcmul 25883 dvmptfsum 25894 dvcnvlem 25895 dvcnv 25896 dvlip2 25915 taylfvallem1 26278 tayl0 26283 taylply2 26289 taylply2OLD 26290 taylply 26291 dvtaylp 26292 dvntaylp 26293 taylthlem1 26295 ulmdvlem1 26323 ulmdvlem3 26325 ulmdv 26326 dvsconst 43690 dvsid 43691 dvsef 43692 dvconstbi 43694 expgrowth 43695 dvdmsscn 45247 dvnmptdivc 45249 dvnmptconst 45252 dvnxpaek 45253 dvnmul 45254 dvnprodlem3 45259 |
Copyright terms: Public domain | W3C validator |