![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cosasin | Structured version Visualization version GIF version |
Description: The cosine of the arcsine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) |
Ref | Expression |
---|---|
cosasin | ⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asincl 26792 | . . 3 ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | |
2 | cosval 16091 | . . 3 ⊢ ((arcsin‘𝐴) ∈ ℂ → (cos‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2)) |
4 | ax-1cn 11188 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
5 | sqcl 14106 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
6 | subcl 11481 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ) | |
7 | 4, 5, 6 | sylancr 586 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ) |
8 | 7 | sqrtcld 15408 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ) |
9 | ax-icn 11189 | . . . . . 6 ⊢ i ∈ ℂ | |
10 | mulcl 11214 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
11 | 9, 10 | mpan 689 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
12 | 8, 11, 8 | ppncand 11633 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) + ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) = ((√‘(1 − (𝐴↑2))) + (√‘(1 − (𝐴↑2))))) |
13 | efiasin 26807 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) | |
14 | 11, 8, 13 | comraddd 11450 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((√‘(1 − (𝐴↑2))) + (i · 𝐴))) |
15 | mulneg12 11674 | . . . . . . . . . 10 ⊢ ((i ∈ ℂ ∧ (arcsin‘𝐴) ∈ ℂ) → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴))) | |
16 | 9, 1, 15 | sylancr 586 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · -(arcsin‘𝐴))) |
17 | asinneg 26805 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴)) | |
18 | 17 | oveq2d 7430 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (i · (arcsin‘-𝐴)) = (i · -(arcsin‘𝐴))) |
19 | 16, 18 | eqtr4d 2770 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (-i · (arcsin‘𝐴)) = (i · (arcsin‘-𝐴))) |
20 | 19 | fveq2d 6895 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (exp‘(i · (arcsin‘-𝐴)))) |
21 | negcl 11482 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
22 | efiasin 26807 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) | |
23 | 21, 22 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘-𝐴))) = ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) |
24 | mulneg2 11673 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴)) | |
25 | 9, 24 | mpan 689 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴)) |
26 | sqneg 14104 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (-𝐴↑2) = (𝐴↑2)) | |
27 | 26 | oveq2d 7430 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (1 − (-𝐴↑2)) = (1 − (𝐴↑2))) |
28 | 27 | fveq2d 6895 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (-𝐴↑2))) = (√‘(1 − (𝐴↑2)))) |
29 | 25, 28 | oveq12d 7432 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((i · -𝐴) + (√‘(1 − (-𝐴↑2)))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
30 | 20, 23, 29 | 3eqtrd 2771 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = (-(i · 𝐴) + (√‘(1 − (𝐴↑2))))) |
31 | 11 | negcld 11580 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → -(i · 𝐴) ∈ ℂ) |
32 | 31, 8 | addcomd 11438 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-(i · 𝐴) + (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + -(i · 𝐴))) |
33 | 8, 11 | negsubd 11599 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((√‘(1 − (𝐴↑2))) + -(i · 𝐴)) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) |
34 | 30, 32, 33 | 3eqtrd 2771 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · (arcsin‘𝐴))) = ((√‘(1 − (𝐴↑2))) − (i · 𝐴))) |
35 | 14, 34 | oveq12d 7432 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) = (((√‘(1 − (𝐴↑2))) + (i · 𝐴)) + ((√‘(1 − (𝐴↑2))) − (i · 𝐴)))) |
36 | 8 | 2timesd 12477 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 · (√‘(1 − (𝐴↑2)))) = ((√‘(1 − (𝐴↑2))) + (√‘(1 − (𝐴↑2))))) |
37 | 12, 35, 36 | 3eqtr4d 2777 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) = (2 · (√‘(1 − (𝐴↑2))))) |
38 | 37 | oveq1d 7429 | . 2 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · (arcsin‘𝐴))) + (exp‘(-i · (arcsin‘𝐴)))) / 2) = ((2 · (√‘(1 − (𝐴↑2)))) / 2)) |
39 | 2cnd 12312 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ∈ ℂ) | |
40 | 2ne0 12338 | . . . 4 ⊢ 2 ≠ 0 | |
41 | 40 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ≠ 0) |
42 | 8, 39, 41 | divcan3d 12017 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 · (√‘(1 − (𝐴↑2)))) / 2) = (√‘(1 − (𝐴↑2)))) |
43 | 3, 38, 42 | 3eqtrd 2771 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ‘cfv 6542 (class class class)co 7414 ℂcc 11128 0cc0 11130 1c1 11131 ici 11132 + caddc 11133 · cmul 11135 − cmin 11466 -cneg 11467 / cdiv 11893 2c2 12289 ↑cexp 14050 √csqrt 15204 expce 16029 cosccos 16032 arcsincasin 26781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8838 df-pm 8839 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-fi 9426 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-ioo 13352 df-ioc 13353 df-ico 13354 df-icc 13355 df-fz 13509 df-fzo 13652 df-fl 13781 df-mod 13859 df-seq 13991 df-exp 14051 df-fac 14257 df-bc 14286 df-hash 14314 df-shft 15038 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-limsup 15439 df-clim 15456 df-rlim 15457 df-sum 15657 df-ef 16035 df-sin 16037 df-cos 16038 df-pi 16040 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-hom 17248 df-cco 17249 df-rest 17395 df-topn 17396 df-0g 17414 df-gsum 17415 df-topgen 17416 df-pt 17417 df-prds 17420 df-xrs 17475 df-qtop 17480 df-imas 17481 df-xps 17483 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-mulg 19015 df-cntz 19259 df-cmn 19728 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-fbas 21263 df-fg 21264 df-cnfld 21267 df-top 22783 df-topon 22800 df-topsp 22822 df-bases 22836 df-cld 22910 df-ntr 22911 df-cls 22912 df-nei 22989 df-lp 23027 df-perf 23028 df-cn 23118 df-cnp 23119 df-haus 23206 df-tx 23453 df-hmeo 23646 df-fil 23737 df-fm 23829 df-flim 23830 df-flf 23831 df-xms 24213 df-ms 24214 df-tms 24215 df-cncf 24785 df-limc 25782 df-dv 25783 df-log 26477 df-asin 26784 |
This theorem is referenced by: sinacos 26824 |
Copyright terms: Public domain | W3C validator |