![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2lgslem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for 2lgs 27327. (Contributed by AV, 20-Jun-2021.) |
Ref | Expression |
---|---|
2lgslem2.n | ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) |
Ref | Expression |
---|---|
2lgslem2 | ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lgslem2.n | . 2 ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) | |
2 | simpl 482 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℙ) | |
3 | elsng 4638 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → (𝑃 ∈ {2} ↔ 𝑃 = 2)) | |
4 | z2even 16338 | . . . . . . . 8 ⊢ 2 ∥ 2 | |
5 | breq2 5146 | . . . . . . . 8 ⊢ (𝑃 = 2 → (2 ∥ 𝑃 ↔ 2 ∥ 2)) | |
6 | 4, 5 | mpbiri 258 | . . . . . . 7 ⊢ (𝑃 = 2 → 2 ∥ 𝑃) |
7 | 3, 6 | biimtrdi 252 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → (𝑃 ∈ {2} → 2 ∥ 𝑃)) |
8 | 7 | con3dimp 408 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ¬ 𝑃 ∈ {2}) |
9 | 2, 8 | eldifd 3955 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ (ℙ ∖ {2})) |
10 | oddprm 16770 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ) | |
11 | 10 | nnzd 12607 | . . . 4 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℤ) |
12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ) |
13 | prmz 16637 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
14 | 13 | zred 12688 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ) |
15 | 4re 12318 | . . . . . . 7 ⊢ 4 ∈ ℝ | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 4 ∈ ℝ) |
17 | 4ne0 12342 | . . . . . . 7 ⊢ 4 ≠ 0 | |
18 | 17 | a1i 11 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 4 ≠ 0) |
19 | 14, 16, 18 | redivcld 12064 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (𝑃 / 4) ∈ ℝ) |
20 | 19 | flcld 13787 | . . . 4 ⊢ (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ) |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ∈ ℤ) |
22 | 12, 21 | zsubcld 12693 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ∈ ℤ) |
23 | 1, 22 | eqeltrid 2832 | 1 ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∖ cdif 3941 {csn 4624 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℝcr 11129 0cc0 11130 1c1 11131 − cmin 11466 / cdiv 11893 2c2 12289 4c4 12291 ℤcz 12580 ⌊cfl 13779 ∥ cdvds 16222 ℙcprime 16633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-fl 13781 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-dvds 16223 df-prm 16634 |
This theorem is referenced by: 2lgs 27327 |
Copyright terms: Public domain | W3C validator |