![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > 0cnop | Structured version Visualization version GIF version |
Description: The identically zero function is a continuous Hilbert space operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0cnop | ⊢ 0hop ∈ ContOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ho0f 31548 | . 2 ⊢ 0hop : ℋ⟶ ℋ | |
2 | 1rp 13002 | . . . 4 ⊢ 1 ∈ ℝ+ | |
3 | ho0val 31547 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℋ → ( 0hop ‘𝑤) = 0ℎ) | |
4 | ho0val 31547 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℋ → ( 0hop ‘𝑥) = 0ℎ) | |
5 | 3, 4 | oveqan12rd 7434 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥)) = (0ℎ −ℎ 0ℎ)) |
6 | 5 | adantlr 714 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥)) = (0ℎ −ℎ 0ℎ)) |
7 | ax-hv0cl 30800 | . . . . . . . . . . 11 ⊢ 0ℎ ∈ ℋ | |
8 | hvsubid 30823 | . . . . . . . . . . 11 ⊢ (0ℎ ∈ ℋ → (0ℎ −ℎ 0ℎ) = 0ℎ) | |
9 | 7, 8 | ax-mp 5 | . . . . . . . . . 10 ⊢ (0ℎ −ℎ 0ℎ) = 0ℎ |
10 | 6, 9 | eqtrdi 2783 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥)) = 0ℎ) |
11 | 10 | fveq2d 6895 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (normℎ‘(( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥))) = (normℎ‘0ℎ)) |
12 | norm0 30925 | . . . . . . . 8 ⊢ (normℎ‘0ℎ) = 0 | |
13 | 11, 12 | eqtrdi 2783 | . . . . . . 7 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (normℎ‘(( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥))) = 0) |
14 | rpgt0 13010 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ+ → 0 < 𝑦) | |
15 | 14 | ad2antlr 726 | . . . . . . 7 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → 0 < 𝑦) |
16 | 13, 15 | eqbrtrd 5164 | . . . . . 6 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → (normℎ‘(( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥))) < 𝑦) |
17 | 16 | a1d 25 | . . . . 5 ⊢ (((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℋ) → ((normℎ‘(𝑤 −ℎ 𝑥)) < 1 → (normℎ‘(( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥))) < 𝑦)) |
18 | 17 | ralrimiva 3141 | . . . 4 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 1 → (normℎ‘(( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥))) < 𝑦)) |
19 | breq2 5146 | . . . . 5 ⊢ (𝑧 = 1 → ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 ↔ (normℎ‘(𝑤 −ℎ 𝑥)) < 1)) | |
20 | 19 | rspceaimv 3613 | . . . 4 ⊢ ((1 ∈ ℝ+ ∧ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 1 → (normℎ‘(( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥))) < 𝑦)) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘(( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥))) < 𝑦)) |
21 | 2, 18, 20 | sylancr 586 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘(( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥))) < 𝑦)) |
22 | 21 | rgen2 3192 | . 2 ⊢ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘(( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥))) < 𝑦) |
23 | elcnop 31654 | . 2 ⊢ ( 0hop ∈ ContOp ↔ ( 0hop : ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘(( 0hop ‘𝑤) −ℎ ( 0hop ‘𝑥))) < 𝑦))) | |
24 | 1, 22, 23 | mpbir2an 710 | 1 ⊢ 0hop ∈ ContOp |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 class class class wbr 5142 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 0cc0 11130 1c1 11131 < clt 11270 ℝ+crp 12998 ℋchba 30716 normℎcno 30720 0ℎc0v 30721 −ℎ cmv 30722 0hop ch0o 30740 ContOpccop 30743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cc 10450 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 ax-mulf 11210 ax-hilex 30796 ax-hfvadd 30797 ax-hvcom 30798 ax-hvass 30799 ax-hv0cl 30800 ax-hvaddid 30801 ax-hfvmul 30802 ax-hvmulid 30803 ax-hvmulass 30804 ax-hvdistr1 30805 ax-hvdistr2 30806 ax-hvmul0 30807 ax-hfi 30876 ax-his1 30879 ax-his2 30880 ax-his3 30881 ax-his4 30882 ax-hcompl 30999 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8718 df-map 8838 df-pm 8839 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-fi 9426 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-acn 9957 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-ioo 13352 df-ico 13354 df-icc 13355 df-fz 13509 df-fzo 13652 df-fl 13781 df-seq 13991 df-exp 14051 df-hash 14314 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-clim 15456 df-rlim 15457 df-sum 15657 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-hom 17248 df-cco 17249 df-rest 17395 df-topn 17396 df-0g 17414 df-gsum 17415 df-topgen 17416 df-pt 17417 df-prds 17420 df-xrs 17475 df-qtop 17480 df-imas 17481 df-xps 17483 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-mulg 19015 df-cntz 19259 df-cmn 19728 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-fbas 21263 df-fg 21264 df-cnfld 21267 df-top 22783 df-topon 22800 df-topsp 22822 df-bases 22836 df-cld 22910 df-ntr 22911 df-cls 22912 df-nei 22989 df-cn 23118 df-cnp 23119 df-lm 23120 df-haus 23206 df-tx 23453 df-hmeo 23646 df-fil 23737 df-fm 23829 df-flim 23830 df-flf 23831 df-xms 24213 df-ms 24214 df-tms 24215 df-cfil 25170 df-cau 25171 df-cmet 25172 df-grpo 30290 df-gid 30291 df-ginv 30292 df-gdiv 30293 df-ablo 30342 df-vc 30356 df-nv 30389 df-va 30392 df-ba 30393 df-sm 30394 df-0v 30395 df-vs 30396 df-nmcv 30397 df-ims 30398 df-dip 30498 df-ssp 30519 df-ph 30610 df-cbn 30660 df-hnorm 30765 df-hba 30766 df-hvsub 30768 df-hlim 30769 df-hcau 30770 df-sh 31004 df-ch 31018 df-oc 31049 df-ch0 31050 df-shs 31105 df-pjh 31192 df-h0op 31545 df-cnop 31637 |
This theorem is referenced by: cnlnadjeu 31875 |
Copyright terms: Public domain | W3C validator |