MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsringd Structured version   Visualization version   GIF version

Theorem xpsringd 20261
Description: A product of two rings is a ring (xpsmnd 18727 analog). (Contributed by AV, 28-Feb-2025.)
Hypotheses
Ref Expression
xpsringd.y 𝑌 = (𝑆 ×s 𝑅)
xpsringd.s (𝜑𝑆 ∈ Ring)
xpsringd.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
xpsringd (𝜑𝑌 ∈ Ring)

Proof of Theorem xpsringd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsringd.y . . 3 𝑌 = (𝑆 ×s 𝑅)
2 eqid 2727 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2727 . . 3 (Base‘𝑅) = (Base‘𝑅)
4 xpsringd.s . . 3 (𝜑𝑆 ∈ Ring)
5 xpsringd.r . . 3 (𝜑𝑅 ∈ Ring)
6 eqid 2727 . . 3 (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 eqid 2727 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
8 eqid 2727 . . 3 ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}) = ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})
91, 2, 3, 4, 5, 6, 7, 8xpsval 17545 . 2 (𝜑𝑌 = ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})))
106xpsff1o2 17544 . . . . 5 (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
111, 2, 3, 4, 5, 6, 7, 8xpsrnbas 17546 . . . . . 6 (𝜑 → ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})))
1211f1oeq3d 6830 . . . . 5 (𝜑 → ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ↔ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))))
1310, 12mpbii 232 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})))
14 f1ocnv 6845 . . . 4 ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})) → (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅)))
15 f1of1 6832 . . . 4 ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅)) → (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))–1-1→((Base‘𝑆) × (Base‘𝑅)))
1613, 14, 153syl 18 . . 3 (𝜑(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))–1-1→((Base‘𝑆) × (Base‘𝑅)))
17 2on 8494 . . . . 5 2o ∈ On
1817a1i 11 . . . 4 (𝜑 → 2o ∈ On)
19 fvexd 6906 . . . 4 (𝜑 → (Scalar‘𝑆) ∈ V)
20 xpscf 17540 . . . . 5 ({⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}:2o⟶Ring ↔ (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring))
214, 5, 20sylanbrc 582 . . . 4 (𝜑 → {⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}:2o⟶Ring)
228, 18, 19, 21prdsringd 20250 . . 3 (𝜑 → ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}) ∈ Ring)
23 eqid 2727 . . . 4 ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})) = ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))
24 eqid 2727 . . . 4 (Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})) = (Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))
2523, 24imasringf1 20260 . . 3 (((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))–1-1→((Base‘𝑆) × (Base‘𝑅)) ∧ ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}) ∈ Ring) → ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})) ∈ Ring)
2616, 22, 25syl2anc 583 . 2 (𝜑 → ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})) ∈ Ring)
279, 26eqeltrd 2828 1 (𝜑𝑌 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3469  c0 4318  {cpr 4626  cop 4630   × cxp 5670  ccnv 5671  ran crn 5673  Oncon0 6363  wf 6538  1-1wf1 6539  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7414  cmpo 7416  1oc1o 8473  2oc2o 8474  Basecbs 17173  Scalarcsca 17229  Xscprds 17420  s cimas 17479   ×s cxps 17481  Ringcrg 20166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17416  df-prds 17422  df-imas 17483  df-xps 17485  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-minusg 18887  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168
This theorem is referenced by:  rngringbdlem2  21190  rngqiprngu  21201  pzriprng  21416
  Copyright terms: Public domain W3C validator