![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsringd | Structured version Visualization version GIF version |
Description: A product of two rings is a ring (xpsmnd 18727 analog). (Contributed by AV, 28-Feb-2025.) |
Ref | Expression |
---|---|
xpsringd.y | ⊢ 𝑌 = (𝑆 ×s 𝑅) |
xpsringd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
xpsringd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
xpsringd | ⊢ (𝜑 → 𝑌 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsringd.y | . . 3 ⊢ 𝑌 = (𝑆 ×s 𝑅) | |
2 | eqid 2727 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | eqid 2727 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | xpsringd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
5 | xpsringd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
6 | eqid 2727 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
7 | eqid 2727 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
8 | eqid 2727 | . . 3 ⊢ ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) = ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17545 | . 2 ⊢ (𝜑 → 𝑌 = (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) |
10 | 6 | xpsff1o2 17544 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
11 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17546 | . . . . . 6 ⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) |
12 | 11 | f1oeq3d 6830 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ↔ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})))) |
13 | 10, 12 | mpbii 232 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) |
14 | f1ocnv 6845 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅))) | |
15 | f1of1 6832 | . . . 4 ⊢ (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅)) → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅))) | |
16 | 13, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅))) |
17 | 2on 8494 | . . . . 5 ⊢ 2o ∈ On | |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 2o ∈ On) |
19 | fvexd 6906 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑆) ∈ V) | |
20 | xpscf 17540 | . . . . 5 ⊢ ({〈∅, 𝑆〉, 〈1o, 𝑅〉}:2o⟶Ring ↔ (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring)) | |
21 | 4, 5, 20 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → {〈∅, 𝑆〉, 〈1o, 𝑅〉}:2o⟶Ring) |
22 | 8, 18, 19, 21 | prdsringd 20250 | . . 3 ⊢ (𝜑 → ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) ∈ Ring) |
23 | eqid 2727 | . . . 4 ⊢ (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) = (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) | |
24 | eqid 2727 | . . . 4 ⊢ (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) = (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) | |
25 | 23, 24 | imasringf1 20260 | . . 3 ⊢ ((◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅)) ∧ ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) ∈ Ring) → (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) ∈ Ring) |
26 | 16, 22, 25 | syl2anc 583 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) ∈ Ring) |
27 | 9, 26 | eqeltrd 2828 | 1 ⊢ (𝜑 → 𝑌 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ∅c0 4318 {cpr 4626 〈cop 4630 × cxp 5670 ◡ccnv 5671 ran crn 5673 Oncon0 6363 ⟶wf 6538 –1-1→wf1 6539 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 1oc1o 8473 2oc2o 8474 Basecbs 17173 Scalarcsca 17229 Xscprds 17420 “s cimas 17479 ×s cxps 17481 Ringcrg 20166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17416 df-prds 17422 df-imas 17483 df-xps 17485 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-minusg 18887 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 |
This theorem is referenced by: rngringbdlem2 21190 rngqiprngu 21201 pzriprng 21416 |
Copyright terms: Public domain | W3C validator |