MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsval Structured version   Visualization version   GIF version

Theorem xpsval 17546
Description: Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 ×s 𝑆)
xpsval.x 𝑋 = (Base‘𝑅)
xpsval.y 𝑌 = (Base‘𝑆)
xpsval.1 (𝜑𝑅𝑉)
xpsval.2 (𝜑𝑆𝑊)
xpsval.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpsval.k 𝐺 = (Scalar‘𝑅)
xpsval.u 𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
Assertion
Ref Expression
xpsval (𝜑𝑇 = (𝐹s 𝑈))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑊   𝑥,𝑋,𝑦   𝑥,𝑅   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑦)

Proof of Theorem xpsval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsval.t . 2 𝑇 = (𝑅 ×s 𝑆)
2 xpsval.1 . . . 4 (𝜑𝑅𝑉)
32elexd 3491 . . 3 (𝜑𝑅 ∈ V)
4 xpsval.2 . . . 4 (𝜑𝑆𝑊)
54elexd 3491 . . 3 (𝜑𝑆 ∈ V)
6 fveq2 6892 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
7 xpsval.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
86, 7eqtr4di 2786 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝑋)
9 fveq2 6892 . . . . . . . . 9 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
10 xpsval.y . . . . . . . . 9 𝑌 = (Base‘𝑆)
119, 10eqtr4di 2786 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = 𝑌)
12 mpoeq12 7488 . . . . . . . 8 (((Base‘𝑟) = 𝑋 ∧ (Base‘𝑠) = 𝑌) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
138, 11, 12syl2an 595 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
14 xpsval.f . . . . . . 7 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1513, 14eqtr4di 2786 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = 𝐹)
1615cnveqd 5873 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = 𝐹)
17 fveq2 6892 . . . . . . . . 9 (𝑟 = 𝑅 → (Scalar‘𝑟) = (Scalar‘𝑅))
1817adantr 480 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → (Scalar‘𝑟) = (Scalar‘𝑅))
19 xpsval.k . . . . . . . 8 𝐺 = (Scalar‘𝑅)
2018, 19eqtr4di 2786 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (Scalar‘𝑟) = 𝐺)
21 simpl 482 . . . . . . . . 9 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑟 = 𝑅)
2221opeq2d 4877 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → ⟨∅, 𝑟⟩ = ⟨∅, 𝑅⟩)
23 simpr 484 . . . . . . . . 9 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑠 = 𝑆)
2423opeq2d 4877 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → ⟨1o, 𝑠⟩ = ⟨1o, 𝑆⟩)
2522, 24preq12d 4742 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → {⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩} = {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2620, 25oveq12d 7433 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩}) = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
27 xpsval.u . . . . . 6 𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2826, 27eqtr4di 2786 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩}) = 𝑈)
2916, 28oveq12d 7433 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩})) = (𝐹s 𝑈))
30 df-xps 17486 . . . 4 ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩})))
31 ovex 7448 . . . 4 (𝐹s 𝑈) ∈ V
3229, 30, 31ovmpoa 7571 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ×s 𝑆) = (𝐹s 𝑈))
333, 5, 32syl2anc 583 . 2 (𝜑 → (𝑅 ×s 𝑆) = (𝐹s 𝑈))
341, 33eqtrid 2780 1 (𝜑𝑇 = (𝐹s 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3470  c0 4319  {cpr 4627  cop 4631  ccnv 5672  cfv 6543  (class class class)co 7415  cmpo 7417  1oc1o 8474  Basecbs 17174  Scalarcsca 17230  Xscprds 17421  s cimas 17480   ×s cxps 17482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-xps 17486
This theorem is referenced by:  xpsbas  17548  xpsadd  17550  xpsmul  17551  xpssca  17552  xpsvsca  17553  xpsless  17554  xpsle  17555  xpsmnd  18728  xpsgrp  19009  xpsrngd  20113  xpsringd  20262  xpstps  23708  xpstopnlem2  23709  xpsdsfn  24277  xpsxmet  24280  xpsdsval  24281  xpsmet  24282  xpsxms  24437  xpsms  24438
  Copyright terms: Public domain W3C validator