MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submabas Structured version   Visualization version   GIF version

Theorem submabas 22493
Description: Any subset of the index set of a square matrix defines a submatrix of the matrix. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
submabas.a 𝐴 = (𝑁 Mat 𝑅)
submabas.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submabas ((𝑀𝐵𝐷𝑁) → (𝑖𝐷, 𝑗𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅)))
Distinct variable groups:   𝐵,𝑖,𝑗   𝐷,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)

Proof of Theorem submabas
StepHypRef Expression
1 eqid 2728 . 2 (𝐷 Mat 𝑅) = (𝐷 Mat 𝑅)
2 eqid 2728 . 2 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2728 . 2 (Base‘(𝐷 Mat 𝑅)) = (Base‘(𝐷 Mat 𝑅))
4 submabas.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 submabas.b . . . . 5 𝐵 = (Base‘𝐴)
64, 5matrcl 22325 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
76simpld 494 . . 3 (𝑀𝐵𝑁 ∈ Fin)
8 ssfi 9198 . . 3 ((𝑁 ∈ Fin ∧ 𝐷𝑁) → 𝐷 ∈ Fin)
97, 8sylan 579 . 2 ((𝑀𝐵𝐷𝑁) → 𝐷 ∈ Fin)
106simprd 495 . . 3 (𝑀𝐵𝑅 ∈ V)
1110adantr 480 . 2 ((𝑀𝐵𝐷𝑁) → 𝑅 ∈ V)
12 ssel 3973 . . . . . 6 (𝐷𝑁 → (𝑖𝐷𝑖𝑁))
1312adantl 481 . . . . 5 ((𝑀𝐵𝐷𝑁) → (𝑖𝐷𝑖𝑁))
1413imp 406 . . . 4 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷) → 𝑖𝑁)
15143adant3 1130 . . 3 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → 𝑖𝑁)
16 ssel 3973 . . . . . 6 (𝐷𝑁 → (𝑗𝐷𝑗𝑁))
1716adantl 481 . . . . 5 ((𝑀𝐵𝐷𝑁) → (𝑗𝐷𝑗𝑁))
1817imp 406 . . . 4 (((𝑀𝐵𝐷𝑁) ∧ 𝑗𝐷) → 𝑗𝑁)
19183adant2 1129 . . 3 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → 𝑗𝑁)
205eleq2i 2821 . . . . . 6 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2120biimpi 215 . . . . 5 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2221adantr 480 . . . 4 ((𝑀𝐵𝐷𝑁) → 𝑀 ∈ (Base‘𝐴))
23223ad2ant1 1131 . . 3 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → 𝑀 ∈ (Base‘𝐴))
244, 2matecl 22340 . . 3 ((𝑖𝑁𝑗𝑁𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
2515, 19, 23, 24syl3anc 1369 . 2 (((𝑀𝐵𝐷𝑁) ∧ 𝑖𝐷𝑗𝐷) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
261, 2, 3, 9, 11, 25matbas2d 22338 1 ((𝑀𝐵𝐷𝑁) → (𝑖𝐷, 𝑗𝐷 ↦ (𝑖𝑀𝑗)) ∈ (Base‘(𝐷 Mat 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  Vcvv 3471  wss 3947  cfv 6548  (class class class)co 7420  cmpo 7422  Fincfn 8964  Basecbs 17180   Mat cmat 22320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-sup 9466  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-fz 13518  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-hom 17257  df-cco 17258  df-0g 17423  df-prds 17429  df-pws 17431  df-sra 21058  df-rgmod 21059  df-dsmm 21666  df-frlm 21681  df-mat 22321
This theorem is referenced by:  smadiadetlem3lem0  22580  smadiadet  22585  madjusmdetlem1  33428
  Copyright terms: Public domain W3C validator