![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matecl | Structured version Visualization version GIF version |
Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, http://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018.) |
Ref | Expression |
---|---|
matecl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matecl.k | ⊢ 𝐾 = (Base‘𝑅) |
Ref | Expression |
---|---|
matecl | ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matecl.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | eqid 2727 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
3 | 1, 2 | matrcl 22305 | . . 3 ⊢ (𝑀 ∈ (Base‘𝐴) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | 3ad2ant3 1133 | . 2 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
5 | matecl.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝑅) | |
6 | 1, 5 | matbas2 22316 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐾 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
7 | 6 | eqcomd 2733 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐴) = (𝐾 ↑m (𝑁 × 𝑁))) |
8 | 7 | eleq2d 2814 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐴) ↔ 𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)))) |
9 | 5 | fvexi 6905 | . . . . . . . . 9 ⊢ 𝐾 ∈ V |
10 | 9 | a1i 11 | . . . . . . . 8 ⊢ (𝑅 ∈ V → 𝐾 ∈ V) |
11 | sqxpexg 7751 | . . . . . . . 8 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V) | |
12 | elmapg 8851 | . . . . . . . 8 ⊢ ((𝐾 ∈ V ∧ (𝑁 × 𝑁) ∈ V) → (𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ 𝑀:(𝑁 × 𝑁)⟶𝐾)) | |
13 | 10, 11, 12 | syl2anr 596 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)) ↔ 𝑀:(𝑁 × 𝑁)⟶𝐾)) |
14 | ffnov 7541 | . . . . . . . 8 ⊢ (𝑀:(𝑁 × 𝑁)⟶𝐾 ↔ (𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾)) | |
15 | oveq1 7421 | . . . . . . . . . . . . 13 ⊢ (𝑖 = 𝐼 → (𝑖𝑀𝑗) = (𝐼𝑀𝑗)) | |
16 | 15 | eleq1d 2813 | . . . . . . . . . . . 12 ⊢ (𝑖 = 𝐼 → ((𝑖𝑀𝑗) ∈ 𝐾 ↔ (𝐼𝑀𝑗) ∈ 𝐾)) |
17 | oveq2 7422 | . . . . . . . . . . . . 13 ⊢ (𝑗 = 𝐽 → (𝐼𝑀𝑗) = (𝐼𝑀𝐽)) | |
18 | 17 | eleq1d 2813 | . . . . . . . . . . . 12 ⊢ (𝑗 = 𝐽 → ((𝐼𝑀𝑗) ∈ 𝐾 ↔ (𝐼𝑀𝐽) ∈ 𝐾)) |
19 | 16, 18 | rspc2v 3618 | . . . . . . . . . . 11 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾 → (𝐼𝑀𝐽) ∈ 𝐾)) |
20 | 19 | com12 32 | . . . . . . . . . 10 ⊢ (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾 → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)) |
21 | 20 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾)) |
22 | 21 | a1i 11 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → ((𝑀 Fn (𝑁 × 𝑁) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ 𝐾) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
23 | 14, 22 | biimtrid 241 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀:(𝑁 × 𝑁)⟶𝐾 → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
24 | 13, 23 | sylbid 239 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (𝐾 ↑m (𝑁 × 𝑁)) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
25 | 8, 24 | sylbid 239 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐴) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝐼𝑀𝐽) ∈ 𝐾))) |
26 | 25 | com13 88 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (𝑀 ∈ (Base‘𝐴) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐼𝑀𝐽) ∈ 𝐾))) |
27 | 26 | ex 412 | . . 3 ⊢ (𝐼 ∈ 𝑁 → (𝐽 ∈ 𝑁 → (𝑀 ∈ (Base‘𝐴) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝐼𝑀𝐽) ∈ 𝐾)))) |
28 | 27 | 3imp1 1345 | . 2 ⊢ (((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) ∧ (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) → (𝐼𝑀𝐽) ∈ 𝐾) |
29 | 4, 28 | mpdan 686 | 1 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝐼𝑀𝐽) ∈ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3056 Vcvv 3469 × cxp 5670 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8838 Fincfn 8957 Basecbs 17173 Mat cmat 22300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-sup 9459 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17416 df-prds 17422 df-pws 17424 df-sra 21051 df-rgmod 21052 df-dsmm 21659 df-frlm 21674 df-mat 22301 |
This theorem is referenced by: matecld 22321 matinvgcell 22330 matepmcl 22357 matepm2cl 22358 dmatmul 22392 marrepcl 22459 marepvcl 22464 mulmarep1el 22467 mulmarep1gsum1 22468 submabas 22473 m1detdiag 22492 mdetdiag 22494 m2detleib 22526 marep01ma 22555 smadiadetlem4 22564 mat2pmatbas 22621 decpmatmul 22667 pm2mpghm 22711 chpscmat 22737 chpscmatgsumbin 22739 chpscmatgsummon 22740 mdetlap1 33417 |
Copyright terms: Public domain | W3C validator |