![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssexi | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
ssexi.1 | ⊢ 𝐵 ∈ V |
ssexi.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexi.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssexi.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | ssex 5323 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3471 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-sep 5301 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3429 df-v 3473 df-in 3954 df-ss 3964 |
This theorem is referenced by: abex 5328 zfausab 5334 ord3ex 5389 epse 5663 opabex 7236 opabresex2 7476 mptexw 7960 fvclex 7966 oprabex 7984 mpoexw 8087 tfrlem16 8418 fosetex 8881 f1osetex 8882 dffi3 9460 r0weon 10041 dfac3 10150 dfac5lem4 10155 dfac2b 10159 hsmexlem6 10460 domtriomlem 10471 axdc3lem 10479 ac6 10509 brdom7disj 10560 brdom6disj 10561 niex 10910 enqex 10951 npex 11015 nrex1 11093 enrex 11096 reex 11235 nnex 12254 zex 12603 qex 12981 ixxex 13373 ltweuz 13964 seqexw 14020 cshwsexa 14812 prmex 16653 prdsval 17442 prdsle 17449 sectfval 17739 sscpwex 17803 issubc 17826 isfunc 17855 fullfunc 17900 fthfunc 17901 isfull 17904 isfth 17908 ipoval 18527 letsr 18590 ressmulgnn 19037 nmznsg 19128 eqgfval 19136 isghm 19175 lpival 21219 xrsle 21320 znle 21471 cssval 21619 pjfval 21645 ltbval 21986 opsrle 21990 istopon 22832 dmtopon 22843 leordtval2 23134 lecldbas 23141 xkoopn 23511 xkouni 23521 xkoccn 23541 xkoco1cn 23579 xkoco2cn 23580 xkococn 23582 xkoinjcn 23609 uzrest 23819 ustfn 24124 ustn0 24143 isphtpc 24938 tcphex 25163 tchnmfval 25174 bcthlem1 25270 bcthlem5 25274 dyadmbl 25547 itg2seq 25690 aannenlem3 26283 psercn 26381 abelth 26396 vmadivsum 27433 rpvmasumlem 27438 mudivsum 27481 selberglem1 27496 selberglem2 27497 selberg2lem 27501 selberg2 27502 pntrsumo1 27516 selbergr 27519 iscgrg 28334 isismt 28356 ishlg 28424 ishpg 28581 iscgra 28631 isinag 28660 isleag 28669 wksv 29451 sspval 30551 ajfval 30637 shex 31040 chex 31054 hmopex 31703 ressplusf 32702 inftmrel 32906 isinftm 32907 dmvlsiga 33753 measbase 33821 ismeas 33823 isrnmeas 33824 faeval 33870 eulerpartlemmf 34000 eulerpartlemgvv 34001 signsplypnf 34187 signsply0 34188 afsval 34308 kur14lem7 34827 kur14lem9 34829 satfvsuclem1 34974 fmlasuc0 34999 mppsval 35187 dfon2lem7 35390 colinearex 35661 poimirlem4 37102 heibor1lem 37287 rrnval 37305 lsatset 38466 lcvfbr 38496 cmtfvalN 38686 cvrfval 38744 lineset 39215 psubspset 39221 psubclsetN 39413 lautset 39559 pautsetN 39575 tendoset 40236 dicval 40653 eldiophb 42180 pellexlem3 42254 pellexlem5 42256 onfrALTlem3VD 44329 dmvolsal 45736 smfresal 46178 smfliminflem 46220 upwordsseti 46273 amgmlemALT 48287 |
Copyright terms: Public domain | W3C validator |