![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > enrex | Structured version Visualization version GIF version |
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
enrex | ⊢ ~R ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | npex 11015 | . . . 4 ⊢ P ∈ V | |
2 | 1, 1 | xpex 7759 | . . 3 ⊢ (P × P) ∈ V |
3 | 2, 2 | xpex 7759 | . 2 ⊢ ((P × P) × (P × P)) ∈ V |
4 | df-enr 11084 | . . 3 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
5 | opabssxp 5772 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P)) | |
6 | 4, 5 | eqsstri 4014 | . 2 ⊢ ~R ⊆ ((P × P) × (P × P)) |
7 | 3, 6 | ssexi 5324 | 1 ⊢ ~R ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3471 〈cop 4636 {copab 5212 × cxp 5678 (class class class)co 7424 Pcnp 10888 +P cpp 10890 ~R cer 10893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-tr 5268 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-om 7875 df-ni 10901 df-nq 10941 df-np 11010 df-enr 11084 |
This theorem is referenced by: addsrpr 11104 mulsrpr 11105 ltsrpr 11106 0r 11109 1sr 11110 m1r 11111 addclsr 11112 mulclsr 11113 recexsrlem 11132 |
Copyright terms: Public domain | W3C validator |