![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > aannenlem3 | Structured version Visualization version GIF version |
Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aannenlem.a | ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) |
Ref | Expression |
---|---|
aannenlem3 | ⊢ 𝔸 ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aannenlem.a | . . . . . 6 ⊢ 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0}) | |
2 | 1 | aannenlem2 26282 | . . . . 5 ⊢ 𝔸 = ∪ ran 𝐻 |
3 | omelon 9675 | . . . . . . . . 9 ⊢ ω ∈ On | |
4 | nn0ennn 13982 | . . . . . . . . . . 11 ⊢ ℕ0 ≈ ℕ | |
5 | nnenom 13983 | . . . . . . . . . . 11 ⊢ ℕ ≈ ω | |
6 | 4, 5 | entri 9033 | . . . . . . . . . 10 ⊢ ℕ0 ≈ ω |
7 | 6 | ensymi 9029 | . . . . . . . . 9 ⊢ ω ≈ ℕ0 |
8 | isnumi 9975 | . . . . . . . . 9 ⊢ ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card) | |
9 | 3, 7, 8 | mp2an 690 | . . . . . . . 8 ⊢ ℕ0 ∈ dom card |
10 | cnex 11225 | . . . . . . . . . . 11 ⊢ ℂ ∈ V | |
11 | 10 | rabex 5336 | . . . . . . . . . 10 ⊢ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐‘𝑏) = 0} ∈ V |
12 | 11, 1 | fnmpti 6701 | . . . . . . . . 9 ⊢ 𝐻 Fn ℕ0 |
13 | dffn4 6820 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 ↔ 𝐻:ℕ0–onto→ran 𝐻) | |
14 | 12, 13 | mpbi 229 | . . . . . . . 8 ⊢ 𝐻:ℕ0–onto→ran 𝐻 |
15 | fodomnum 10086 | . . . . . . . 8 ⊢ (ℕ0 ∈ dom card → (𝐻:ℕ0–onto→ran 𝐻 → ran 𝐻 ≼ ℕ0)) | |
16 | 9, 14, 15 | mp2 9 | . . . . . . 7 ⊢ ran 𝐻 ≼ ℕ0 |
17 | domentr 9038 | . . . . . . 7 ⊢ ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω) | |
18 | 16, 6, 17 | mp2an 690 | . . . . . 6 ⊢ ran 𝐻 ≼ ω |
19 | fvelrnb 6962 | . . . . . . . . 9 ⊢ (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓)) | |
20 | 12, 19 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓) |
21 | 1 | aannenlem1 26281 | . . . . . . . . . 10 ⊢ (𝑔 ∈ ℕ0 → (𝐻‘𝑔) ∈ Fin) |
22 | eleq1 2816 | . . . . . . . . . 10 ⊢ ((𝐻‘𝑔) = 𝑓 → ((𝐻‘𝑔) ∈ Fin ↔ 𝑓 ∈ Fin)) | |
23 | 21, 22 | syl5ibcom 244 | . . . . . . . . 9 ⊢ (𝑔 ∈ ℕ0 → ((𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin)) |
24 | 23 | rexlimiv 3144 | . . . . . . . 8 ⊢ (∃𝑔 ∈ ℕ0 (𝐻‘𝑔) = 𝑓 → 𝑓 ∈ Fin) |
25 | 20, 24 | sylbi 216 | . . . . . . 7 ⊢ (𝑓 ∈ ran 𝐻 → 𝑓 ∈ Fin) |
26 | 25 | ssriv 3984 | . . . . . 6 ⊢ ran 𝐻 ⊆ Fin |
27 | aasscn 26271 | . . . . . . . 8 ⊢ 𝔸 ⊆ ℂ | |
28 | 2, 27 | eqsstrri 4015 | . . . . . . 7 ⊢ ∪ ran 𝐻 ⊆ ℂ |
29 | soss 5612 | . . . . . . 7 ⊢ (∪ ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻)) | |
30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ (𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻) |
31 | iunfictbso 10143 | . . . . . 6 ⊢ ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ∪ ran 𝐻) → ∪ ran 𝐻 ≼ ω) | |
32 | 18, 26, 30, 31 | mp3an12i 1461 | . . . . 5 ⊢ (𝑓 Or ℂ → ∪ ran 𝐻 ≼ ω) |
33 | 2, 32 | eqbrtrid 5185 | . . . 4 ⊢ (𝑓 Or ℂ → 𝔸 ≼ ω) |
34 | cnso 16229 | . . . 4 ⊢ ∃𝑓 𝑓 Or ℂ | |
35 | 33, 34 | exlimiiv 1926 | . . 3 ⊢ 𝔸 ≼ ω |
36 | 5 | ensymi 9029 | . . 3 ⊢ ω ≈ ℕ |
37 | domentr 9038 | . . 3 ⊢ ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ) | |
38 | 35, 36, 37 | mp2an 690 | . 2 ⊢ 𝔸 ≼ ℕ |
39 | 10, 27 | ssexi 5324 | . . 3 ⊢ 𝔸 ∈ V |
40 | nnssq 12978 | . . . 4 ⊢ ℕ ⊆ ℚ | |
41 | qssaa 26277 | . . . 4 ⊢ ℚ ⊆ 𝔸 | |
42 | 40, 41 | sstri 3989 | . . 3 ⊢ ℕ ⊆ 𝔸 |
43 | ssdomg 9025 | . . 3 ⊢ (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸)) | |
44 | 39, 42, 43 | mp2 9 | . 2 ⊢ ℕ ≼ 𝔸 |
45 | sbth 9122 | . 2 ⊢ ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ) | |
46 | 38, 44, 45 | mp2an 690 | 1 ⊢ 𝔸 ≈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2936 ∀wral 3057 ∃wrex 3066 {crab 3428 Vcvv 3471 ⊆ wss 3947 ∪ cuni 4910 class class class wbr 5150 ↦ cmpt 5233 Or wor 5591 dom cdm 5680 ran crn 5681 Oncon0 6372 Fn wfn 6546 –onto→wfo 6549 ‘cfv 6551 ωcom 7874 ≈ cen 8965 ≼ cdom 8966 Fincfn 8968 cardccrd 9964 ℂcc 11142 0cc0 11144 ≤ cle 11285 ℕcn 12248 ℕ0cn0 12508 ℤcz 12594 ℚcq 12968 abscabs 15219 0𝑝c0p 25616 Polycply 26136 coeffccoe 26138 degcdgr 26139 𝔸caa 26267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7689 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-oadd 8495 df-omul 8496 df-er 8729 df-map 8851 df-pm 8852 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-inf 9472 df-oi 9539 df-dju 9930 df-card 9968 df-acn 9971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-n0 12509 df-xnn0 12581 df-z 12595 df-uz 12859 df-q 12969 df-rp 13013 df-ico 13368 df-icc 13369 df-fz 13523 df-fzo 13666 df-fl 13795 df-mod 13873 df-seq 14005 df-exp 14065 df-hash 14328 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-limsup 15453 df-clim 15470 df-rlim 15471 df-sum 15671 df-0p 25617 df-ply 26140 df-idp 26141 df-coe 26142 df-dgr 26143 df-quot 26244 df-aa 26268 |
This theorem is referenced by: aannen 26284 |
Copyright terms: Public domain | W3C validator |