MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem3 Structured version   Visualization version   GIF version

Theorem aannenlem3 26283
Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem3 𝔸 ≈ ℕ
Distinct variable group:   𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem3
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aannenlem.a . . . . . 6 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
21aannenlem2 26282 . . . . 5 𝔸 = ran 𝐻
3 omelon 9675 . . . . . . . . 9 ω ∈ On
4 nn0ennn 13982 . . . . . . . . . . 11 0 ≈ ℕ
5 nnenom 13983 . . . . . . . . . . 11 ℕ ≈ ω
64, 5entri 9033 . . . . . . . . . 10 0 ≈ ω
76ensymi 9029 . . . . . . . . 9 ω ≈ ℕ0
8 isnumi 9975 . . . . . . . . 9 ((ω ∈ On ∧ ω ≈ ℕ0) → ℕ0 ∈ dom card)
93, 7, 8mp2an 690 . . . . . . . 8 0 ∈ dom card
10 cnex 11225 . . . . . . . . . . 11 ℂ ∈ V
1110rabex 5336 . . . . . . . . . 10 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} ∈ V
1211, 1fnmpti 6701 . . . . . . . . 9 𝐻 Fn ℕ0
13 dffn4 6820 . . . . . . . . 9 (𝐻 Fn ℕ0𝐻:ℕ0onto→ran 𝐻)
1412, 13mpbi 229 . . . . . . . 8 𝐻:ℕ0onto→ran 𝐻
15 fodomnum 10086 . . . . . . . 8 (ℕ0 ∈ dom card → (𝐻:ℕ0onto→ran 𝐻 → ran 𝐻 ≼ ℕ0))
169, 14, 15mp2 9 . . . . . . 7 ran 𝐻 ≼ ℕ0
17 domentr 9038 . . . . . . 7 ((ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω) → ran 𝐻 ≼ ω)
1816, 6, 17mp2an 690 . . . . . 6 ran 𝐻 ≼ ω
19 fvelrnb 6962 . . . . . . . . 9 (𝐻 Fn ℕ0 → (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓))
2012, 19ax-mp 5 . . . . . . . 8 (𝑓 ∈ ran 𝐻 ↔ ∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓)
211aannenlem1 26281 . . . . . . . . . 10 (𝑔 ∈ ℕ0 → (𝐻𝑔) ∈ Fin)
22 eleq1 2816 . . . . . . . . . 10 ((𝐻𝑔) = 𝑓 → ((𝐻𝑔) ∈ Fin ↔ 𝑓 ∈ Fin))
2321, 22syl5ibcom 244 . . . . . . . . 9 (𝑔 ∈ ℕ0 → ((𝐻𝑔) = 𝑓𝑓 ∈ Fin))
2423rexlimiv 3144 . . . . . . . 8 (∃𝑔 ∈ ℕ0 (𝐻𝑔) = 𝑓𝑓 ∈ Fin)
2520, 24sylbi 216 . . . . . . 7 (𝑓 ∈ ran 𝐻𝑓 ∈ Fin)
2625ssriv 3984 . . . . . 6 ran 𝐻 ⊆ Fin
27 aasscn 26271 . . . . . . . 8 𝔸 ⊆ ℂ
282, 27eqsstrri 4015 . . . . . . 7 ran 𝐻 ⊆ ℂ
29 soss 5612 . . . . . . 7 ( ran 𝐻 ⊆ ℂ → (𝑓 Or ℂ → 𝑓 Or ran 𝐻))
3028, 29ax-mp 5 . . . . . 6 (𝑓 Or ℂ → 𝑓 Or ran 𝐻)
31 iunfictbso 10143 . . . . . 6 ((ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ran 𝐻) → ran 𝐻 ≼ ω)
3218, 26, 30, 31mp3an12i 1461 . . . . 5 (𝑓 Or ℂ → ran 𝐻 ≼ ω)
332, 32eqbrtrid 5185 . . . 4 (𝑓 Or ℂ → 𝔸 ≼ ω)
34 cnso 16229 . . . 4 𝑓 𝑓 Or ℂ
3533, 34exlimiiv 1926 . . 3 𝔸 ≼ ω
365ensymi 9029 . . 3 ω ≈ ℕ
37 domentr 9038 . . 3 ((𝔸 ≼ ω ∧ ω ≈ ℕ) → 𝔸 ≼ ℕ)
3835, 36, 37mp2an 690 . 2 𝔸 ≼ ℕ
3910, 27ssexi 5324 . . 3 𝔸 ∈ V
40 nnssq 12978 . . . 4 ℕ ⊆ ℚ
41 qssaa 26277 . . . 4 ℚ ⊆ 𝔸
4240, 41sstri 3989 . . 3 ℕ ⊆ 𝔸
43 ssdomg 9025 . . 3 (𝔸 ∈ V → (ℕ ⊆ 𝔸 → ℕ ≼ 𝔸))
4439, 42, 43mp2 9 . 2 ℕ ≼ 𝔸
45 sbth 9122 . 2 ((𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸) → 𝔸 ≈ ℕ)
4638, 44, 45mp2an 690 1 𝔸 ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  wne 2936  wral 3057  wrex 3066  {crab 3428  Vcvv 3471  wss 3947   cuni 4910   class class class wbr 5150  cmpt 5233   Or wor 5591  dom cdm 5680  ran crn 5681  Oncon0 6372   Fn wfn 6546  ontowfo 6549  cfv 6551  ωcom 7874  cen 8965  cdom 8966  Fincfn 8968  cardccrd 9964  cc 11142  0cc0 11144  cle 11285  cn 12248  0cn0 12508  cz 12594  cq 12968  abscabs 15219  0𝑝c0p 25616  Polycply 26136  coeffccoe 26138  degcdgr 26139  𝔸caa 26267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7689  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-oadd 8495  df-omul 8496  df-er 8729  df-map 8851  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-oi 9539  df-dju 9930  df-card 9968  df-acn 9971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-xnn0 12581  df-z 12595  df-uz 12859  df-q 12969  df-rp 13013  df-ico 13368  df-icc 13369  df-fz 13523  df-fzo 13666  df-fl 13795  df-mod 13873  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-limsup 15453  df-clim 15470  df-rlim 15471  df-sum 15671  df-0p 25617  df-ply 26140  df-idp 26141  df-coe 26142  df-dgr 26143  df-quot 26244  df-aa 26268
This theorem is referenced by:  aannen  26284
  Copyright terms: Public domain W3C validator