Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrxline Structured version   Visualization version   GIF version

Theorem rrxline 47730
Description: The line passing through the two different points 𝑋 and 𝑌 in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023.)
Hypotheses
Ref Expression
rrxlines.e 𝐸 = (ℝ^‘𝐼)
rrxlines.p 𝑃 = (ℝ ↑m 𝐼)
rrxlines.l 𝐿 = (LineM𝐸)
rrxlines.m · = ( ·𝑠𝐸)
rrxlines.a + = (+g𝐸)
Assertion
Ref Expression
rrxline ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
Distinct variable groups:   𝐸,𝑝,𝑡   𝐼,𝑝,𝑡   𝑃,𝑝   𝑋,𝑝,𝑡   𝑌,𝑝,𝑡
Allowed substitution hints:   𝑃(𝑡)   + (𝑡,𝑝)   · (𝑡,𝑝)   𝐿(𝑡,𝑝)

Proof of Theorem rrxline
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxlines.e . . . . 5 𝐸 = (ℝ^‘𝐼)
2 rrxlines.p . . . . 5 𝑃 = (ℝ ↑m 𝐼)
3 rrxlines.l . . . . 5 𝐿 = (LineM𝐸)
4 rrxlines.m . . . . 5 · = ( ·𝑠𝐸)
5 rrxlines.a . . . . 5 + = (+g𝐸)
61, 2, 3, 4, 5rrxlines 47729 . . . 4 (𝐼 ∈ Fin → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
76oveqd 7431 . . 3 (𝐼 ∈ Fin → (𝑋𝐿𝑌) = (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌))
87adantr 480 . 2 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌))
9 eqidd 2728 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))}))
10 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1110oveq2d 7430 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → ((1 − 𝑡) · 𝑥) = ((1 − 𝑡) · 𝑋))
12 simpr 484 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1312oveq2d 7430 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑡 · 𝑦) = (𝑡 · 𝑌))
1411, 13oveq12d 7432 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌)))
1514eqeq2d 2738 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))))
1615rexbidv 3173 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦)) ↔ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))))
1716rabbidv 3435 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
1817adantl 481 . . 3 (((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))} = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
19 sneq 4634 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2019difeq2d 4118 . . . 4 (𝑥 = 𝑋 → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋}))
2120adantl 481 . . 3 (((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) ∧ 𝑥 = 𝑋) → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋}))
22 simpr1 1192 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → 𝑋𝑃)
23 id 22 . . . . . . . 8 (𝑋𝑌𝑋𝑌)
2423necomd 2991 . . . . . . 7 (𝑋𝑌𝑌𝑋)
2524anim2i 616 . . . . . 6 ((𝑌𝑃𝑋𝑌) → (𝑌𝑃𝑌𝑋))
26253adant1 1128 . . . . 5 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝑌𝑃𝑌𝑋))
27 eldifsn 4786 . . . . 5 (𝑌 ∈ (𝑃 ∖ {𝑋}) ↔ (𝑌𝑃𝑌𝑋))
2826, 27sylibr 233 . . . 4 ((𝑋𝑃𝑌𝑃𝑋𝑌) → 𝑌 ∈ (𝑃 ∖ {𝑋}))
2928adantl 481 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → 𝑌 ∈ (𝑃 ∖ {𝑋}))
302ovexi 7448 . . . . 5 𝑃 ∈ V
3130rabex 5328 . . . 4 {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V
3231a1i 11 . . 3 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))} ∈ V)
339, 18, 21, 22, 29, 32ovmpodx 7566 . 2 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑥) + (𝑡 · 𝑦))})𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
348, 33eqtrd 2767 1 ((𝐼 ∈ Fin ∧ (𝑋𝑃𝑌𝑃𝑋𝑌)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ ∃𝑡 ∈ ℝ 𝑝 = (((1 − 𝑡) · 𝑋) + (𝑡 · 𝑌))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wrex 3065  {crab 3427  Vcvv 3469  cdif 3941  {csn 4624  cfv 6542  (class class class)co 7414  cmpo 7416  m cmap 8836  Fincfn 8955  cr 11129  1c1 11131  cmin 11466  +gcplusg 17224   ·𝑠 cvsca 17228  ℝ^crrx 25298  LineMcline 47723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-rp 12999  df-fz 13509  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-0g 17414  df-prds 17420  df-pws 17422  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-grp 18884  df-minusg 18885  df-sbg 18886  df-subg 19069  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-cring 20167  df-oppr 20262  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-dvr 20329  df-subrng 20472  df-subrg 20497  df-drng 20615  df-field 20616  df-sra 21047  df-rgmod 21048  df-cnfld 21267  df-refld 21524  df-dsmm 21653  df-frlm 21668  df-tng 24480  df-tcph 25084  df-rrx 25300  df-line 47725
This theorem is referenced by:  rrxlinec  47732
  Copyright terms: Public domain W3C validator